Skip to main content Accessibility help
×
Home

Design and Fabrication of Dispersion Controlled and Polarization Maintaining Photonic Crystal Fibers for Optical Communications Systems

  • Satoki Kawanishi (a1), Takashi Yamamoto (a2), Hirokazu Kubota (a1), Masatoshi Tanaka (a2) and Syun-ichiro Yamaguchi (a2)...

Abstract

Recent progress on photonic crystal fibers (PCFs) is reviewed aiming at their application to high performance optical communications sytems. The optical properties, for example dispersion characteristics, can be set by selecting the appropriate combination of air hole diameter and air hole pitch. A noteworthy characteristic of PCFs is their strong birefringence, which suggests optical components with better polarization maintaining characteristics.

This paper describes the characteristics of dispersion controlled PCFs and polarization maintaining PCFs. It describes theoretical analyses and experimental results of fabricated PCFs that have short wavelength zero dispersion at 810 nm, polarization maintaining capability with birefringence of 1 × 10−3, polarization maintaining dispersion flattened functions, and absolute single polarization state support with polarization dependent loss of 1 dB/m at 1550 nm. A supercontinuum generation experiment with PM-PCF in the 1550 nm region is shown with symmetrical spectral broadening to over 40 nm. The potential of PCFs will be discussed with reference to the next generation optical communications systems.

Copyright

References

Hide All
1. Knight, J. C., Birks, T. A., St, P., Russel, J., and Atkin, D. M., “All-silica single mode fiber with photonic crystal cladding,” Opt. Lett., vol. 21, pp. 15471549, 1996.
2. Mogilevtsev, D., Birks, T. A., and St, P., Russel, J., “Group-velocity dispersion in photonic crystal fibers,” Opt. Lett., vol. 23, pp. 16621664, 1998.
3. Gardner, M. J., McBride, R., Jones, J. D. C., Mogilevtsev, D., Birks, T. A., Knight, J. C., and St, P., Russel, J., “Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett., vol. 35, No. 16, pp. 6364, 1999.
4. Birks, T. A., Mogilevtsev, D., Knight, J. C., and St, P., Russell, J., “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett., vol. 11, pp. 674676, 1999.
5. Ranka, J. K., Windeler, R. S., and Stentz, A. J., “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett., vol. 25, pp. 2527, 2000.
6. Wadsworth, W. J., Knight, J. C., Ortigosa-Blanch, A., Arriaga, J., Silvestre, E., and St, P., Russell, J., “Soliton effects in photonic crystal fibres at 850 nm,” Electron. Lett., vol. 36, No. 1, pp. 5355, 2000.
7. Hansen, K. P., Jensen, J. R., Jacobsen, C., Simonsen, H. R., Broeng, J., Skovgaard, P. M. W., Petersson, A., and Bjarklev, A., “Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 μm,” Tech. Digest of Optical Fiber Communication Conference (OFC) 2002, vol. 70, postdeadline paper FA9.
8. Reeves, W., Knight, J., Russell, P., Roberts, P., and Mangan, B., “Dispersion-flattened photonic crystal fibers at 1550 nm,” Tech. Digest of Optical Fiber Communication Conference (OFC) 2003, paper FI3.
9. Hansen, K. P., “Dispersion flattened hybrid-core nonlinear photonic crystal fiber,” Optics Express, vol. 11, pp. 15031509, 2003.
10. Yamamoto, T., Kubota, H., and Kawanishi, S., Tanaka, M. and Yamaguch, S., “Supercontinuum generation at 1.55 μm in a dispersion-flattened polarization-maintaining photonic crystal fiberOptics Express, vol. 11, pp. 15371540, 2003.
11. Birks, T. A., Knight, J. C., and St, P., Russel, J., “Endlessly single-mode photonic crystal fiber,” Opt. Lett., vol. 22, pp. 961963, 1997.
12. Kawanishi, S. and Okamoto, K., ‘Polarization maintaining holey optical fiber’, IEICE Soc. Conf. 2000, Nagoya, B10 (in Japanese).
13. Ortigosa-Blanch, A., Knight, J. C., Wadsworth, W. J., Arriaga, J., Mangan, B. J., Birks, T. A., and St, P., Russell, J., “Highly birefringent photonic crystal fibers,” Opt. Lett., vol. 25, pp. 13251327, 2000.
14. Suzuki, K., Kubota, H., Kawanishi, S., Tanaka, M., and Fujita, M., “High-speed bi-directional polarisation division multiplexed optical transmission in ultra low-loss (1.3 dB/km) polarisation-maintaining photonic crystal fibre,” Electron. Lett., vol. 37, No. 23, pp. 13991401, 2001.
15. Tajima, K., Zhou, J., Kurokawa, K., and Nakajima, K., “Low water peak photonic crystal fibers,” Tech. Digest of European Conference on Optical Communication (ECOC) 2003, paper Th4.1.6.
16. Kubota, H., Suzuki, K., Kawanishi, S., Nakazawa, M., Tanaka, M., and Fujita, M., “Low-loss, 2 km-long photonic crystal fiber with zero GVD in the near IR suitable for picosecond pulse propagation at the 800 nm band,” Tech. Digest of Conference on Lasers and Electro-Optics (CLEO) 2001, Baltimore, paper CPD3.
17. Knight, J. C., Arriaga, J., Birks, T. A., Ortigosa-Blanch, A., Wadsworth, W. J., and St, P., Russell, J., “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett., vol. 12, pp. 807809, 2000.
18. Koshiba, M. and Tsuji, Y., “Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems,” IEEE J. Lightwave Technol., vol. 18, No. 5, pp. 737743, 2000.
19. Ferrando, A., Silvestre, E., Miret, J. J., Monsoriu, J. A., Andres, M. V., and St, P., Russell, J., “Designing a photonic crystal fibre with flattened chromatic dispersion,” Electron. Lett., vol. 35, pp. 325327, 1999.
20. Monro, T. M., Richardson, D. J., Broderick, N. G. R., and Bennett, P. J., “Holey optical fibers: An efficient modal model,” IEEE J. Lightwave Technol., vol. 17, pp. 10931102, 1999.
21. White, T. P., McPhedran, R. C., “Multiple method for efficient microstructured optical fiber calculations,” Tech. Digest of Conference on Lasers and Electro-Optics (CLEO) 2001, Baltimore, paper JTuC6, pp. 597598.
22. Hosaka, T., Okamoto, K., Miya, T., Sasaki, Y., and Edahiro, T., ‘Low-loss single polarisation fibres with asymmetrical strain birefringence’, Electron. Lett., vol. 17, pp. 530531, 1981.
23. Hansen, T. P., Broeng, J., Libori, S. E. B., Knudsen, E., Bjarklev, A., Jensen, J. R., and Simonsen, H., “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett., vol. 13, pp. 588590, 2001.
24. Payne, D. N., Barlow, A. J., and Hansen, J. J. R., “Development of low- and high-birefringence optical fibers,” IEEE J. Quantum Electron., vol. QE–18, pp. 477488, 1982.
25. Takara, H., Ohara, T., Mori, K., Sato, K., Yamada, E., Inoue, Y., Shibata, T., Abe, M., Morioka, T., and Sato, K-I., “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett., vol. 36, pp. 20892090, 2000.
26. Yusoff, Z., Teh, P., Petropoulos, P., Furusawa, K., Belardi, W., Monro, T., and Richardson, D., “24 channel × 10 GHz spectrally spliced pulse source based on spectral broadening in a highly nonlinear holy fiber,” Tech. Digest of Optical Fiber Communication Conference (OFC) 2003, paper FH3.
27. Petropoulos, P., Monro, T. M., Ebendorff-Heidepriem, H., Framoton, K., Moore, R. C., Rutt, H. N., and Richardson, D. J., “Soliton-self-frequency-shift effects and pulse compression in an anomalously dispersive high nonlinearity lead silicate holey fiber,” Tech. Digest of Optical Fiber Communication Conference (OFC) 2003, postdeadline paper PD3.
28. Kawakami, S. and Nishida, S., “Characteristics of doubly clad optical fiber with a low-index inner cladding”, IEEE J. Quantum Electron., vol. QE–10, No. 12, pp. 879887, 1974.

Design and Fabrication of Dispersion Controlled and Polarization Maintaining Photonic Crystal Fibers for Optical Communications Systems

  • Satoki Kawanishi (a1), Takashi Yamamoto (a2), Hirokazu Kubota (a1), Masatoshi Tanaka (a2) and Syun-ichiro Yamaguchi (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed