Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-29T20:01:34.323Z Has data issue: false hasContentIssue false

Deposition of Dlc Via Intense Ion Beam Ablation

Published online by Cambridge University Press:  22 February 2011

Gregory P. Johnston
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545 Department of Chemical Engineering, University of New Mexico/Center for Micro-Engineered Ceramics, Albuquerque, New Mexico 87131
Prabhat Tiwari
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Donald J. Rej
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Harold A. Davis
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
William J. Waganaar
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Ross E. Muenchausen
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
David Tallant
Affiliation:
Sandia National Laboratory P. O. Box 5800, Albuquerque, New Mexico 87185-0343
Regina L. Simpson
Affiliation:
Sandia National Laboratory P. O. Box 5800, Albuquerque, New Mexico 87185-0343
David B. Williams
Affiliation:
Department of Metallurgy & Materials Engineering, Lehigh University, Bethlehem, Pennsylvania, 18015-3195
Xiamei Qui
Affiliation:
Department of Chemical Engineering, University of New Mexico/Center for Micro-Engineered Ceramics, Albuquerque, New Mexico 87131
Get access

Abstract

Diamond-like carbon films were prepared by high intensity pulsed ion beam ablation of graphite targets. A 350 keV, 35 kA, 400 ns pulse width beam, consisting primarily of carbon ions and protons, was focused onto a graphite target at a fluence of 15-45 J/cm2. Films were deposited onto substrates positioned in an angular array from normal to the target to 90° off normal. Deposition rates up to 30 nm per pulse, corresponding to an instantaneous deposition rate greater than 1 mm/sec, have been observed. Electrical resistivities between 1 and 1000 ohm·cm were measured for these films. XRD scans showed that no crystalline structure developed in the films. SEM revealed that the bulk of the films contain material with feature sizes on the order of 100 nm, but micron size particles were deposited as well. Both Raman and electron energy loss spectroscopy indicated significant amounts of sp3 bonded carbon present in most of the films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Angus, J. Hayman, C., Science 913, 241 (1988).Google Scholar
2 Pappas, D. L., Saenger, K. L., Bruley, J., Krakow, W., Gu, T., and Collins, W., J. Appl. Phys. 71 (11), 5675 (1992).Google Scholar
3 Robertson, J., Phys. Rev. Lett. 68, 220 (1992).Google Scholar
4 Deshpandey, C. V. and Bunshah, R. F., J. Vac. Sci. Technol. A 7 (3), 2294 (1989).Google Scholar
5 Kim, S. B. and F Wager, J., Surface and Coatings Technology 43/44, 99 (1990).Google Scholar
6 Kumar, N.; U. S. Patent No. 5,199,918 ( 6 Apr. 1993).Google Scholar
7 Pappas, D. L., Saenger, K. L., Cuomo, J. J., and Dreyfus, R. W., J. Appl. Phys. 72 (9), 3966 (1992).Google Scholar
8 Cuomo, J. J., Pappas, D. L., Bruley, J., Doyle, J. P., and Saenger, K. L., J. Appl. Phys. 70 (3), 1706 (1991).Google Scholar
9 Bruley, J., Cuomo, J. J., Doyle, J. P., Pappas, D. L., Saenger, K. L., Liu, J. C., and Batson, P. E., Mater. Res. Soc. Symp. Proc. 202, 247 (1991).Google Scholar
10 Aisenberg, S. and Chabot, R., J. Appl. Phys. 42, 2953 (1971).Google Scholar
11 Smimotori, Y., Yokoyma, M., Isobe, H., Harada, S., Masugata, K., and Yatsui, K., J. Appl. Phys. 63, 968 (1988).Google Scholar
12 Gautier, D. C., Muenchausen, R. E., Rej, D. J., Roberts, B. F., Johnston, G. P., Waganaar, W. J., in Beam-Solid Interactions: Fundamentals and Applications. Nastasi, M. et al. , ed., MRS Symposium Proc. 279, 657 (1993).Google Scholar
13 Harjes, et al. , Proceedings of the 8th International Pulsed Power Conference, pp. 543548, San Diego, 1991.Google Scholar
14 Rej, D. J., Bartsch, R. R., Davis, H. A., Faehl, R. J., Greenly, J. B., Waganaar, W. J., Rev. Sci. Instr. 64, 2753 (1993).Google Scholar
15 Davis, H.A., submitted to Rev. Sci. Instr. Google Scholar
16 Rej, D J., Johnston, G. P., Davis, H. A., Muenchausen, R. E., Ruiz, C., Thompson, M., and Waganaar, W. J., submitted to Laser and Particle Beams.Google Scholar
17 Brixius, W. H., Properties and Characterization of Graphite (Poco Graphite, Decantur, Tx., 1987).Google Scholar
18 Chenko, R. M. and Strong, H. M., General Electric Technical Information Series, Report No. 75CRD089, 1975.Google Scholar
19 Fuchs, A., Jung, K. Ehrhardt, H., Muhling, I., and Breuer, K., Thin Solid Films 217, 48 (1992).Google Scholar
20 Jarman, R. H., Ray, G. J., Standley, R. W., and Zajac, G. W., Appl. Phys. Lett. 49 (17), 1065 (1986).Google Scholar
21 Williams, D. B., Practical Analytical Electron Microscopy in Materials Science (Philips Electronic Instruments, Mahwah, New Jersey, 1984).Google Scholar
22 Cho, N. H., Veirs, D. K., Ager III, J. W., Rubin, M. D., Hopper, C. B., and Bogy, D. B., J. Appl. Phys. 71 (5), 2243 (1992).Google Scholar