Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T17:26:00.853Z Has data issue: false hasContentIssue false

Deposition Of Aluminium Nitride Film By Ion Beam Enhanced Reactive Magnetron Sputtering

Published online by Cambridge University Press:  16 February 2011

R. F. Huang
Affiliation:
Institute of Metal Research, Academia Sinica, 110015 Shenyang, China
L. S. Wen
Affiliation:
Institute of Metal Research, Academia Sinica, 110015 Shenyang, China
H. Wang
Affiliation:
Institute of Metal Research, Academia Sinica, 110015 Shenyang, China
J. Wu
Affiliation:
Institute of Metal Research, Academia Sinica, 110015 Shenyang, China
R. J. Hong
Affiliation:
Institute of Metal Research, Academia Sinica, 110015 Shenyang, China
Get access

Abstract

Aluminium nitride film has been synthesized at substrate temperatures lower than 100 °C by using ion beam enhanced reactive magnetron sputtering. The growth rate was much higher than that obtained by usual physical vapor deposition at low substrate temperatures. The stoichiometry of the film was controlled by varying the resultant current of the ion beam used and identified by X-ray diffraction analysis. The optical properties of the film were also studied.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Yim, W. M., Stofko, E. J., Zanzucchi, P. J., Pankove, J. I., Ettenkerg, M. and Gilbert, S.L., J. Appl. Phys., 44, 292(1973).Google Scholar
2 Liu, J. K., Lakin, K. M., Wang, K. L., J. AppI. Phys. 46, 3703(1975).Google Scholar
3 Noreika, A. J. and Ing, D. W., J. Appl. Phys. 39, 5578(1968).Google Scholar
4 Chubacki, Y., Sato, K. and Kojima, K., Thin Solid Films, 122, 259(1984).Google Scholar
5 Roman, Y. G. and Adriaansen, A. P. M., Thin Solid Films, 169, 241(1989).Google Scholar
6 Hantzpergue, J. J., Pauleau, Y. and Remy, J. C., Thin Solid Films, 75,167(1981).Google Scholar
7 MacMahon, R., Affinito, J. and Parsons, R., J. Vac. Sci. & Technol. 20,376(1982).Google Scholar
8 Aita, C. R., J. Appl. Phys. 53, 1807(1982).Google Scholar
9 Esta, G., Surridge, R. and Westwood, W. D., J. Vac. Sci. & Technol. A4,989(1986).Google Scholar
10 Li, X. J., Xu, Z. H., He, Z. Y., Cao, H. Z., Su, W. D., Chen, Z. C., Zhou, F. and Wang, E. G., Thin Solid Films, 139, 261(1986).Google Scholar
11 Shiosaki, T., Yamamoto, T., Oda, T. and Kawabata, A., Appl. Phys. Lett., 36, 643 (1980).Google Scholar
12 Harper, J. M. E., Cuomo, J. J. and Hentzell, H. T. G., Appl. Phys. Lett., 43, 547 (1983).Google Scholar
13 Yoshida, S., Misawa, S. Ji, Y. F., Takada, S., Hayakawa, H., Gonda, S. and Itoh, A., J. Vac. Sci. & Technol., 16, 990(1979).Google Scholar
14 Alexandre, F., Masson, J. M., Post, G. and Scavenne, A., Thin Solid Films, 98, 75(1982).Google Scholar
15 Yoshida, S., Misawa, S. and Ito, A., Appl. Phys. Lett, 26, 461(1975).Google Scholar
16 Murayama, Y. and Kashiwagi, K., J. Vac. Sci. & Technol., 17, 796(1980).Google Scholar
17 Gerova, E.V., Ivanow, N. A. and Kirov, K. I., Thin Solid Films, 81, 201(1981).Google Scholar
18 Ramos, M. M. D., Almeida, J. B., Ferpeira, M. I. C. and Dossantos, M. P., Thin Solid Films, 170, 219(1989).Google Scholar
19 Siettmann, J. R. and Aita, C. R.. J. Vac. Sci. Technol. A6. 1712(1988).Google Scholar
20 Aita, C. R. and Gawlak, C. J., J. Vac. Sci. Technol. Al, 403(1983)Google Scholar