Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-05-12T12:34:09.259Z Has data issue: false hasContentIssue false

Dependence of the E2 and A1(LO) modes on InN fraction in InGaN epilayers

Published online by Cambridge University Press:  01 February 2011

S. Hernández
Affiliation:
Department of Physics and Applied Physics, University of Strathclyde, Glasgow, G4 0NG, Scotland, United Kingdom.
R. Cuscó
Affiliation:
Institut Jaume Almera (CSIC), C. Lluís Solé i Sabarís s.n., 08028 Barcelona, Spain.
L. Artús
Affiliation:
Institut Jaume Almera (CSIC), C. Lluís Solé i Sabarís s.n., 08028 Barcelona, Spain.
K.P. O'Donnell
Affiliation:
Department of Physics and Applied Physics, University of Strathclyde, Glasgow, G4 0NG, Scotland, United Kingdom.
R.W. Martin
Affiliation:
Department of Physics and Applied Physics, University of Strathclyde, Glasgow, G4 0NG, Scotland, United Kingdom.
I.M. Watson
Affiliation:
Institute of Photonics, University of Strathclyde, Glasgow G4 0NW, United Kingdom.
Y. Nanishi
Affiliation:
Dept. of Photonics, Ritsumeikan Univ., 1–1–1 Noji-higashi, Kusatsu 525–8577, Japan.
M. Kurouchi
Affiliation:
Dept. of Photonics, Ritsumeikan Univ., 1–1–1 Noji-higashi, Kusatsu 525–8577, Japan.
W. Van der Stricht
Affiliation:
University of Ghent, Ghent, Belgium.
Get access

Abstract

The behavior of the E2 and A1(LO) optical phonons in Inx Ga1-x N has been analyzed by Raman scattering over the whole composition range. The frequencies of the E2 and A1(LO) modes decrease with increasing InN fraction. These modes display a significant broadening for an InN fraction of ≈ 60% and their linewidth decreases towards both ends of the composition range as a consequence of reduced cation disorder. Our results show a one-mode behavior for both E2 and A1(LO) modes of InGaN.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Lin, M.E., Strite, S., and Morkoc, H., in The physical properties of AlN, GaN and InN, in the Encyclopedia of Advanced Materials, edited by Bloor, D., Fleming, M.C., and Brook, R.J., (Pergamon Press, 1994), p. 7996.Google Scholar
[2] Yodo, T., Yona, H., Ando, H., Yosei, D. and Harada, Y., Appl. Phys. Lett. 80, 968 (2002).Google Scholar
[3] Tansley, T.L., Foley, C.P., J. Appl. Phys. 59, 3241 (1986).Google Scholar
[4] Ivanova, S.V., Shubina, T.V., Jmerik, V.N., Vekshin, V.A., Kop'ev, P.S., and Monemar, B., J. Cryst. Growth 269, 1 (2004).Google Scholar
[5] Shubina, T.V., Ivanov, S.V., Jmerik, V.N., Solnyshkov, D.D., Vekshin, V.A., Kop'ev, P.S., Vasson, A., Leymarie, J., Kovokin, A., Amano, H., Shimono, K., Kasic, A., Monemar, B., Phys. Rev. Lett. 92, 117407 (2004).Google Scholar
[6] Wu, J., Walukiewicz, W., Yu, K.M., Ager, J.W. III, Haller, E.E., Lu, H., Schaff, W.J., Appl. Phys. Lett. 80, 4741 (2002).Google Scholar
[7] Saito, Y., Harima, H., Kurimoto, E., Yamaguchi, T., Teraguchi, N., Suzuki, A., Araki, T., and Nanishi, Y., Phys. Stat. Solidi B 234, 796 (2002).Google Scholar
[8] Lucovsky, G., Cheng, K.Y., and Pearson, G.L., Phys. Rev. B 12, 4135 (1975).Google Scholar
[9] Ferrini, R., Galli, M., Guizzetti, G., Patrini, M., Bosacchi, A., Franchi, S., and Magnanini, R., Phys. Rev. B 56, 7549 (1997).Google Scholar
[10] Groenen, J., Carles, R., Landa, G., Guerret-Piécourt, C., Fontaine, C., and Gendry, M., Phys. Rev. B 58, 10452 (1998).Google Scholar
[11] Grille, H., Schnittler, Ch., and Bechstedt, F., Phys. Rev. B 61, 6061 (1999).Google Scholar
[12] Yu, S.G., Kim, K.W., Bergman, L., Dutta, M., Stroscio, M.A., and Zavada, J.M., Phys. Rev. B 58, 15283 (1998).Google Scholar
[13] Davydov, V.Y., Goncharuk, I.N., Smirnov, A.N., Nikolaev, A.E., Lundin, W.V., Usikov, A.S., Klochikhin, A.A., Aderhold, J., Graul, J., and Semchinova, O., Phys. Rev. B 65, 125203 (2002).Google Scholar
[14] Alexson, D., Bergman, L., Nemanich, R.J., Dutta, M., Stroscio, M.A., Parker, C.A., Bedair, S.M., El-Masry, N.A. and Adar, F., J. Appl. Phys. 89, 798 (2001).Google Scholar
[15] Correia, M.R., Pereira, S., Pereira, E., Frandon, J., and Alves, E., Appl. Phys. Letters 83, 4761 (2003).Google Scholar
[16] Sugiura, T., Kawaguchi, Y., Tsukamoto, T., Andoh, H., Yamaguchi, M., Hiramatsu, K. and Sawaki, N., Jpn. J. Appl. Phys. 40, 5955 (2001).Google Scholar
[17] Davydov, V.Y., Klochikhin, A.A., Emtsev, V.V., Smirnov, A.N., Goncharuk, I.N., Sakharov, A.V., Kurdyukov, D.A., Baidakova, M.V., Vekshin, V.A., Ivanov, S.V., Aderhold, J., Graul, J., Hashimoto, A., and Yamamoto, A., Phys. Stat. Solidi B 240, 425 (2003).Google Scholar
[18] Pereira, S., Correia, M.R., Pereira, E., Trager-Cowan, C., Sweeney, F., O'Donnell, K.P., Alves, E., Franco, N., and Sequeira, A.D., Appl. Phys. Lett. 81, 1207 (2002).Google Scholar
[19] Correia, M.R., Pereira, S., Pereira, E., Frandon, J., and Alves, E., Appl. Phys. Lett. 83, 4761 (2003).Google Scholar
[20] Davydov, V.Y., Kitaev, Y.E., Goncharuk, I.N., Smirnov, A.N., Graul, J., Semchinova, O., Uffmann, D., Smirnov, M.B., Mirgorodsky, A.P., and Evarestov, R.A., Phys. Rev. B 58, 12899 (1998).Google Scholar
[21] O'Donnell, K.P., Ferńndez-Torrente, I., Edwards, P.R., and Martin, R.W., J. Cryst. Growth 269, 100 (2004).Google Scholar