Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-28T00:40:03.197Z Has data issue: false hasContentIssue false

The Dependence of Dielectric Properties on Composition Variation in Ba0.6Sr0.4(YTa)yTi1-2yO3

Published online by Cambridge University Press:  01 February 2011

Daniel Potrepka
Affiliation:
Sensors & Electron Devices Directorate, U.S. Army Research Laboratory, Adelphi, MD 20783-1197, U.S.A.
Steven Tidrow
Affiliation:
Sensors & Electron Devices Directorate, U.S. Army Research Laboratory, Adelphi, MD 20783-1197, U.S.A.
Arthur Tauber
Affiliation:
Sensors & Electron Devices Directorate, U.S. Army Research Laboratory, Adelphi, MD 20783-1197, U.S.A.
Kevin Kirchner
Affiliation:
Sensors & Electron Devices Directorate, U.S. Army Research Laboratory, Adelphi, MD 20783-1197, U.S.A.
Matthew Ervin
Affiliation:
Sensors & Electron Devices Directorate, U.S. Army Research Laboratory, Adelphi, MD 20783-1197, U.S.A.
Krishna Deb
Affiliation:
Sensors & Electron Devices Directorate, U.S. Army Research Laboratory, Adelphi, MD 20783-1197, U.S.A.
Bernard Rod
Affiliation:
Sensors & Electron Devices Directorate, U.S. Army Research Laboratory, Adelphi, MD 20783-1197, U.S.A.
Frank Crowne
Affiliation:
Sensors & Electron Devices Directorate, U.S. Army Research Laboratory, Adelphi, MD 20783-1197, U.S.A.
Get access

Abstract

Ba0.6Sr0.4(YTa)yTi1-2yO3 has been shown to have properties which are promising for tunable applications requiring low dielectric constant [1]. Ba0.6Sr0.4(YTa)yTi1-2yO3 with y ≤ 0.10 has been synthesized and well-characterized using x-ray diffraction, EDAX, and Raman Spectroscopy. The dependence of the dielectric properties on concentration, y, of Y and Ta are discussed along with implications for improved performance in device applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Potrepka, D. M., Tidrow, S. C., and Tauber, A., Mat. Res. Soc. Symp. Proc. 656E, DD5.9 (2001).Google Scholar
2. Potrepka, D. M., Tidrow, S. C., and Tauber, A., to be published in Integrated Ferroelectrics 42, 97 (2002).Google Scholar
3. Tidrow, S. C. et al., Integrated Ferroelectrics 28, 151 (2000).Google Scholar
4. Crowne, F. J. and Tidrow, S. C. in Materials Issues for Tunable RF and Microwave Devices III, Proceedings of 2002 MRS Spring Meeting, paper number H6.5, San Francisco, CA (2002).Google Scholar
5. Woodward, P., Hoffmann, R.-D., and Sleight, A.W., J. Mater. Res. 9, 2118 (1994).Google Scholar
6. Dobal, P. S. et al., Journal of Raman Spectroscopy 32, 147 (2001); B. D. Begg, K. S. Finnie, and E. R. Vance, J. Am. Ceram. Soc. 79, 2666 (1996).Google Scholar
7. Kolar, D., Proceedings of the International Conference on the Chemistry of Electronic Ceramic Materials, edited by Davies, Peter K. and Roth, Robert S., (NIST, 1990), p.3.Google Scholar
8. Galasso, F. S., Perovskites and High Tc Superconductors, Gordon and Breach (1990), p. 108.Google Scholar
9. Klapp, S. H. L. and Patey, G. N., J. Chem. Phys. 115, 4718 (2001).Google Scholar
10. Vugmeister, B. E. and Glinchuk, M. D., Rev. Mod. Phys. 62, 993 (1990).Google Scholar
11. Emelyanov, S. M. et al., Phase Transitions A 45, 251 (1993).Google Scholar
12. Dkhil, B. et al., Phys. Rev. B 65, 024104/1 (2002).Google Scholar
13. Crowne, F. J. et al. in Materials Issues for Tunable RF and Microwave Devices III, Proceedings of 2002 MRS Spring Meeting, paper number H5.1, San Francisco, CA (2002).Google Scholar