Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-22T21:41:48.572Z Has data issue: false hasContentIssue false

A Density Functional Theory Study of the Catalytic role of Ti atoms in Reversible Hydrogen Storage in the Complex Metal Hydride, NaAlH4

Published online by Cambridge University Press:  15 February 2011

Santanu Chaudhuri
Affiliation:
Department of Chemistry, Brookhaven National Laboratory, Upton, NY 11973, U.S.A.
James T Muckerman
Affiliation:
Department of Chemistry, Brookhaven National Laboratory, Upton, NY 11973, U.S.A.
Get access

Abstract

Presence of ∼2-4 % Ti is critical for reversible hydrogenation/rehydrogenation in NaAlH4. We have investigated the probable catalytic role of Ti in this complex multi-step process. The present part of our study concentrates on the rehydrogenation reaction, i.e., the reverse reaction that forms NaAlH4 from its constituent binary hydrides. First principles calculations using density functional theory (DFT) show that a particular arrangement of Ti atoms on the surface of Al metal promotes the chemisorption of molecular hydrogen. We also present comparisons with existing experimental data (EXAFS and TEM) to support the existence of such an arrangement on the surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Bogdanovic, B., Schwickardi, M., J. Alloys and compd 253, 1 (1997).Google Scholar
2 Bogdanovic, B., Sandrock, G., MRS Bull 27, 712 (2002).Google Scholar
3 Gross, K. J., Majzoub, E. H., Spangler, S. W., J. Alloys and compd 356, 423 (2003).Google Scholar
4 Kiyobayashi, T., Srinivasan, S. S., Sun, D. L., Jensen, C. M., J Phys Chem A 107, 7671 (2003).Google Scholar
5 Jensen, C. M., Zidan, R., Mariels, N., Hee, A., Hagen, C., Int J Hydrogen Energ 24, 461 (1999).Google Scholar
6 Bogdanovic, B. et al., Adv Mater 15, 1012 (2003).Google Scholar
7 Anton, D. L., J. Alloys and compd 356, 400 (2003).Google Scholar
8 Gross, K. J., Sandrock, G., Thomas, G. J., J. Alloys and compd 330, 691 (2002).Google Scholar
9 Jensen, C. M., Gross, K. J., Appl Phys A-Mater 72, 213 (2001).Google Scholar
10 Felderhoff, M. et al., Phys Chem Chem Phys 6, 4369 (2004).Google Scholar
11 Graetz, J., Reilly, J. J., Johnson, J., Ignatov, A. Y., Tyson, T. A., Appl Phys Lett 85, 500 (2004).Google Scholar
12 Stumpf, R., Phys Rev Lett 78, 4454 (1997).Google Scholar
13 Saleh, A. A. et al., Phys Rev B 56, 9841 (1997).Google Scholar
14 Segall, M. D. et al., J Phys-Condens Mat 14, 2717 (2002).Google Scholar
15 Hammer, B., Hansen, L. B., Norskov, J. K., Phys Rev B 59, 7413 (1999).Google Scholar
16 Delley, B., J Chem Phys 92, 508 (1990).Google Scholar
17 Delley, B., J Chem Phys 113, 7756 (2000).Google Scholar
18 Chaudhuri, S., Muckerman, J. T., J Phys Chem B (Accepted) (2005).Google Scholar
19 Moriarty, J. A., Widom, M., Phys Rev B 56, 7905 (1997).Google Scholar