Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-27T02:38:55.115Z Has data issue: false hasContentIssue false

Dense Xerogel Matrices and Films for Optical Memory

Published online by Cambridge University Press:  25 February 2011

F. Chaput
Affiliation:
Groupe de Chimie du Solide, Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, 91128 Palaiseau (FRANCE)
J. P. Boilot
Affiliation:
Groupe de Chimie du Solide, Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, 91128 Palaiseau (FRANCE)
F. Devreux
Affiliation:
Groupe de Chimie du Solide, Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, 91128 Palaiseau (FRANCE)
M. Canva
Affiliation:
Institut d'Optique Théorique et Appliquée, Bat. 503, B.P. 147, 91403 Orsay (FRANCE)
P. Georges
Affiliation:
Institut d'Optique Théorique et Appliquée, Bat. 503, B.P. 147, 91403 Orsay (FRANCE)
A. Brun
Affiliation:
Institut d'Optique Théorique et Appliquée, Bat. 503, B.P. 147, 91403 Orsay (FRANCE)
Get access

Abstract

Optically clear gels doped with organic molecules are prepared in the zirconia-silica system by hydrolysis of metal alkoxides in a wet atmosphere. After drying, dense xerogels are obtained which exhibit a closed porosity. By using the same route, organic-inorganic hybrid xerogels are also produced as films.

The molecule-matrix interactions are evaluated from the absorption recovery times of the S0→S1 transition for triphenylmethane dyes. Concerning doped xerogels with other organic molecules having polar groups, the application of the strong polarized electric field of an ultrashort optical pulse allows to locally create a birefringence with a memory effect. This type of sample could be used for optical storage and treatment of information.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Avnir, D., Levy, D. and Reisfeld, R., J. Phys. Chem., 88, 5956 (1984).CrossRefGoogle Scholar
2. see Sol-Gel Optics, Proceedings of The International Society for Optical Engineering, Eds Mackenzie, J. D. and Ulrich, D. R., S. P. I. E. Proc. Ser. 1328, (1990).Google Scholar
3. Boilot, J. P., Colomban, Ph. and Blanchard, N., Solid State Ionics, 9/10, 639 (1983).CrossRefGoogle Scholar
4. Canva, M., Le Saux, G., Georges, P., Brun, A., Chaput, F. and Boilot, J. P., Optics Letters 17 (3), 218 (1992).CrossRefGoogle Scholar
5. Devreux, F., Boilot, J. P., Chaput, F. and Lecomte, A., Phys. Rev. A, 41 (12), 6901 (1990).CrossRefGoogle Scholar
6. Schaefer, D. W. and Keefer, K. D., in Better Ceramics Through Chemistry II. edited by Brinker, C. J., Clark, D. E. and Ulrich, D. R., (Mater. Res. Soc. Proc. 73, Palo Alto, 1986) p.277.Google Scholar
7. Schaefer, D. W., Science 242, 1023 (1989).CrossRefGoogle Scholar
8. Schaefer, D. W., Keefer, K. D., Shelleman, R. A. and Martin, J. E., in Advances in Ceramics, Ceramic Powder Science and Technology, The American Ceramic Society, Inc., 21, 561 (1987).Google Scholar
9. Ippen, E. P., Shank, C. V. and Bergman, A., Chem Phys. Letters, 38, 611 (1976).CrossRefGoogle Scholar
10. Canva, M., Le Saux, G., Georges, P., Brun, A., Chaput, F. and Boilot, J. P., Chem. Phys. Letters, 176 (3), 495 (1991).CrossRefGoogle Scholar