Skip to main content Accessibility help
×
Home

Degradation of Ru(bpy)3 2+-based OLEDs

  • Velda Goldberg (a1), Michael Kaplan (a1) (a2), Leonard Soltzberg (a2), Joseph Genevich (a1), Rebecca Berry (a1) (a2), Alma Bukhari (a1) (a2), Sherina Chan (a1) (a2), Megan Damour (a1) (a2), Leigh Friguglietti (a1) (a2), Erica Gunn (a1) (a2), Karen Ho (a1) (a2), Ashley Johnson (a1) (a2), Yin Yin Lin (a1) (a2), Alisabet Lowenthal (a1) (a2), Seiyam Suth (a1) (a2), Regina To (a1) (a2), Regina Yopak (a1) (a2), Jason D. Slinker (a3), George G. Malliaras (a3), Samuel Flores-Torres (a4) and Hector D. Abruña (a4)...

Abstract

Analysis of the possible mechanisms of degradation of Ru(bpy)32+-based OLEDs has led to the idea of quencher formation in the metalloorganic area close to the cathode. It has been suggested that the quencher results from an electrochemical process where one of the bipyridine (bpy) groups is replaced with two water molecules [1] or from reduction of Ru(bpy)32+ to Ru(bpy)30 [2]. We have tested these and other degradation ideas for Ru(bpy)32+-based OLEDs, both prepared and tested with considerable exposure to the ambient environment and using materials and procedures that emphasize cost of preparation rather than overall efficiency. In order to understand the mechanisms involved in these particular devices, we have correlated changes in the devices' electrical and optical properties with MALDI-TOF mass spectra and UV-vis absorption and fluorescence spectra.

Copyright

References

Hide All
1. Kalyuzny, G., Buda, M., McNeil, J., Barbara, P., and Bard, A.. J. Am.Chem.Soc. 125, 62726283 (2003).
2. Maness, K.M., Masui, H., Wightman, R.M., and Murray, R.W., J. Am. Chem. Soc. 119, 39873993 (1997).
3. Slinker, J., Bernards, D., Houston, P.L., Abruña, H.D., Bernhard, S. and Malliaras, G.G., Chem. Comm. 19, 2392 (2003).
4. Scott, J.C. and Malliaras, G.G., in Conjugated Polymers, edited by Hadziioannou, G. and van Hutten, P.F., (Wiley-VCH, New York, 1999), Chap. 13.
5. Buda, M., Kalyuzhny, G. and Bard, A.J., J. Am. Chem. Soc., 124, 60906098 (2002).
6. Rudmann, H., Shimada, S. and Rubner, M.F., Oblas, D.W. and Whitten, J.E., J. Appl. Phys., 92, 15761581 (2002).
7. Gao, G. and Bard, A.J., Chem. Mater. 14, 34653470 (2002)
8. Kalyuzhny, G., Buda, M., McNeill, J., Barbara, P. and Bard, A.J., J. Am. Chem. Soc. 125, 6272 (2003).
9. Rudmann, H., and Rubner, M.F., J. Appl. Phys, 90, 4338 (2001).
10. Slinker, J.D., Maliaras, G.G., Flores-Torres, S., Abruña, H. D., Chunwachirasiri, W. and Winokur, M.J., J. Appl. Phys. 95, 4381 (2004).
11. Carlson, B., Phelan, G. D., Kaminsky, W., Dalton, L. R., Jiang, X., Liu, S., and Jen, A. K. Y. J. Am. Chem. Soc., 124, 14162–72 (2002).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed