Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T11:58:13.613Z Has data issue: false hasContentIssue false

Degradation in aluminum resonant optical rod antennas

Published online by Cambridge University Press:  05 February 2015

Patrick M. Schwab
Affiliation:
Light Technology Institute (LTI), Karlsruhe Institute of Technology, Karlsruhe, Germany Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology, Karlsruhe, Germany
Carola Moosmann
Affiliation:
Light Technology Institute (LTI), Karlsruhe Institute of Technology, Karlsruhe, Germany
Katja Dopf
Affiliation:
Light Technology Institute (LTI), Karlsruhe Institute of Technology, Karlsruhe, Germany
Konstantin S. Ilin
Affiliation:
Institute for Micro- and Nanoelectronic Systems (IMS), Karlsruhe Institute of Technology, Karlsruhe, Germany
Michael Siegel
Affiliation:
Institute for Micro- and Nanoelectronic Systems (IMS), Karlsruhe Institute of Technology, Karlsruhe, Germany
Uli Lemmer
Affiliation:
Light Technology Institute (LTI), Karlsruhe Institute of Technology, Karlsruhe, Germany Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology, Karlsruhe, Germany
Hans-Juergen Eisler
Affiliation:
Light Technology Institute (LTI), Karlsruhe Institute of Technology, Karlsruhe, Germany
Get access

Abstract

Resonant optical rod antennas are made from aluminum using electron-beam lithography and are optically characterized by linear dark-field microscopy and nonlinear multi-photon luminescence spectroscopy. It is demonstrated that by exciting close to the interband transition of aluminum at about 1.5 eV different radiative decay channels can be addressed. Over a period of weeks, a slight spectral red-shift and a decrease in the scattering intensity are observed due to the formation of a native oxide layer at the metal-air interface. To investigate the concurrent influence of shape transformation and dielectric environment on the spectral response function we carry out numerical calculations using finite difference time domain (FDTD) methods. It is found that the induced energy shift is mainly determined by the change of the dielectric constant in the nanovicinity resulting in an overall red-shift as seen in the experiment. These findings allow for a better understanding of designing and modeling plasmonic aluminum nanostructures for e.g. UV sensing where the shift in peak resonance and linewidth are key observables.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anker, J.N.; Hall, W.P.; Lyandres, O.; Shah, N.C.; Zhao, J.; and Van Duyne, R.P., Nat. Mater. 7, 442453 (2008).10.1038/nmat2162CrossRefGoogle Scholar
Homola, J.; Yee, S.S.; and Gauglitz, G., Sensors and Actuators B: Chemical 54, 315 (1999).10.1016/S0925-4005(98)00321-9CrossRefGoogle Scholar
Mühlschlegel, P.; Eisler, H.-J.; Martin, O.J.F.; Hecht, B.; and Pohl, D.W., Science 308, 1607 (2005).10.1126/science.1111886CrossRefGoogle Scholar
Schuck, P.J.; Fromm, D.P.; Sundaramurthy, A.; Kino, G.S.; and Moerner, W.E., Phys. Rev. Lett. 94, 017402 (2005).10.1103/PhysRevLett.94.017402CrossRefGoogle Scholar
Muskens, O.L.; Giannini, V.; Sánchez, J.A.; and Gómez-Rivas, J., Opt. Express 15, 17736 (2007).10.1364/OE.15.017736CrossRefGoogle Scholar
Curto, A.G.; Volpe, G.; Taminiau, T.H.; Kreuzer, M.P.; Quidant, R.; and van Hulst, N.F., Science 329, 930933 (2010).10.1126/science.1191922CrossRefGoogle Scholar
Lal, S.; Link, S.; and Halas, N.J., Nat Photon. 1, 641648 (2011).10.1038/nphoton.2007.223CrossRefGoogle Scholar
Ren, F.-F.; Ang, K.-W.; Ye, J.; Yu, M.; Lo, G.-Q; and Kwong, D.-L., Nano Lett. 11, 12891293 (2011).10.1021/nl104338zCrossRefGoogle Scholar
Zoric, I.; Zäch, M.; Kasemo, B.; and Langhammer, C., ACS Nano 5, 25352546 (2011).10.1021/nn102166tCrossRefGoogle Scholar
Knight, M.W.; King, N.S.; Liu, L.; Everitt, H.O.; Nordlander, E.; and Halas, N.J., ACS Nano 8, 834840 (2014).10.1021/nn405495qCrossRefGoogle Scholar
Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: New York ( 1984).Google Scholar
Wissert, M.D.; Schell, A.W.; Ilin, K.S.; Siegel, M.; and Eisler, H.-J., Nanotechnology 20, 425203 (2009).10.1088/0957-4484/20/42/425203CrossRefGoogle Scholar
Ringe, E.; Langille, M.R.; Sohn, K.; Zhang, J.; Huang, J.; Mirkin, C.A.; Van Duyne, R.P.; and Marks, L.D., J. Phys. Chem. Lett. 3, 14791483 (2012).10.1021/jz300426pCrossRefGoogle Scholar
Schwab, P.M.; Moosmann, C.; Wissert, M.D.; Schmidt, E.W.G.; Ilin, K.S.; Siegel, M.; Lemmer, U.; and Eisler, H.-J., Nano Lett. 13, 15351540 (2013).10.1021/nl304692pCrossRefGoogle Scholar
Moosmann, C.; Sigurdsson, G.S.; Wissert, M.D.; Dopf, K.; Lemmer, U. and Eisler, H.-J., Optics Express 21, 594604 (2013).10.1364/OE.21.000594CrossRefGoogle Scholar