Skip to main content Accessibility help
×
Home

Degradation in aluminum resonant optical rod antennas

  • Patrick M. Schwab (a1) (a2), Carola Moosmann (a1), Katja Dopf (a1), Konstantin S. Ilin (a3), Michael Siegel (a3), Uli Lemmer (a1) (a2) and Hans-Juergen Eisler (a1)...

Abstract

Resonant optical rod antennas are made from aluminum using electron-beam lithography and are optically characterized by linear dark-field microscopy and nonlinear multi-photon luminescence spectroscopy. It is demonstrated that by exciting close to the interband transition of aluminum at about 1.5 eV different radiative decay channels can be addressed. Over a period of weeks, a slight spectral red-shift and a decrease in the scattering intensity are observed due to the formation of a native oxide layer at the metal-air interface. To investigate the concurrent influence of shape transformation and dielectric environment on the spectral response function we carry out numerical calculations using finite difference time domain (FDTD) methods. It is found that the induced energy shift is mainly determined by the change of the dielectric constant in the nanovicinity resulting in an overall red-shift as seen in the experiment. These findings allow for a better understanding of designing and modeling plasmonic aluminum nanostructures for e.g. UV sensing where the shift in peak resonance and linewidth are key observables.

Copyright

References

Hide All
1. Anker, J.N.; Hall, W.P.; Lyandres, O.; Shah, N.C.; Zhao, J.; and Van Duyne, R.P., Nat. Mater. 7, 442453 (2008).10.1038/nmat2162
2. Homola, J.; Yee, S.S.; and Gauglitz, G., Sensors and Actuators B: Chemical 54, 315 (1999).10.1016/S0925-4005(98)00321-9
3. Mühlschlegel, P.; Eisler, H.-J.; Martin, O.J.F.; Hecht, B.; and Pohl, D.W., Science 308, 1607 (2005).10.1126/science.1111886
4. Schuck, P.J.; Fromm, D.P.; Sundaramurthy, A.; Kino, G.S.; and Moerner, W.E., Phys. Rev. Lett. 94, 017402 (2005).10.1103/PhysRevLett.94.017402
5. Muskens, O.L.; Giannini, V.; Sánchez, J.A.; and Gómez-Rivas, J., Opt. Express 15, 17736 (2007).10.1364/OE.15.017736
6. Curto, A.G.; Volpe, G.; Taminiau, T.H.; Kreuzer, M.P.; Quidant, R.; and van Hulst, N.F., Science 329, 930933 (2010).10.1126/science.1191922
7. Lal, S.; Link, S.; and Halas, N.J., Nat Photon. 1, 641648 (2011).10.1038/nphoton.2007.223
8. Ren, F.-F.; Ang, K.-W.; Ye, J.; Yu, M.; Lo, G.-Q; and Kwong, D.-L., Nano Lett. 11, 12891293 (2011).10.1021/nl104338z
9. Zoric, I.; Zäch, M.; Kasemo, B.; and Langhammer, C., ACS Nano 5, 25352546 (2011).10.1021/nn102166t
10. Knight, M.W.; King, N.S.; Liu, L.; Everitt, H.O.; Nordlander, E.; and Halas, N.J., ACS Nano 8, 834840 (2014).10.1021/nn405495q
11. Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: New York ( 1984).
12. Wissert, M.D.; Schell, A.W.; Ilin, K.S.; Siegel, M.; and Eisler, H.-J., Nanotechnology 20, 425203 (2009).10.1088/0957-4484/20/42/425203
13. Ringe, E.; Langille, M.R.; Sohn, K.; Zhang, J.; Huang, J.; Mirkin, C.A.; Van Duyne, R.P.; and Marks, L.D., J. Phys. Chem. Lett. 3, 14791483 (2012).10.1021/jz300426p
14. Schwab, P.M.; Moosmann, C.; Wissert, M.D.; Schmidt, E.W.G.; Ilin, K.S.; Siegel, M.; Lemmer, U.; and Eisler, H.-J., Nano Lett. 13, 15351540 (2013).10.1021/nl304692p
15. Moosmann, C.; Sigurdsson, G.S.; Wissert, M.D.; Dopf, K.; Lemmer, U. and Eisler, H.-J., Optics Express 21, 594604 (2013).10.1364/OE.21.000594

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed