Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-13T22:12:16.091Z Has data issue: false hasContentIssue false

Deformation Mechanisms and Solid-Solution Strengthening in Ordered Alloys

Published online by Cambridge University Press:  26 February 2011

Dennis M. Dimiduk
Affiliation:
Wright Laboratory, Wi/Mllm, Wright-Patterson AFB, OH, 45433–6523
Satish Rao
Affiliation:
National Research Council, Senior Research Associate
Get access

Abstract

Fundamental to understanding the results of alloy design studies, is the need for understanding the intrinsic role of solutes in a particular compound. For many compounds such an understanding must be built from a systematic exploration of the role of deviations from the stoichiometric composition as well as the role of ternary solute additions on the variation of flow behavior. Within most intermetallic systems the problem is complicated since the fundamental mechanisms of flow are not well established and, in those systems where these mechanisms are known, thermal activation can lead to dislocation-core transformations and changes in the operative slip systems with temperature. In general, flow may be governed by more than one dislocation process at a given temperature and deformation twinning may be a major contributing deformation mechanism. The problem of isolating the mechanisms of solid-solution hardening may, therefore, require treatment as a problem of combined strengthening mechanisms operating in parallel. This paper reviews the key aspects of deformation mechanisms and solute strengthening in intermetallic alloys. Classical elastic theories of solute hardening serve as an origin, from which, the progress made to date in isolating the mechanisms of solute hardening in ordered alloys is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fleischer, R.L., Dimiduk, D.M., and Lipsitt, H.A.,.in Annual Reviews of Materials Science, ed. by Huggins, R.A., (Annual Reviews, Palo Alto, CA 19 1989) pp.23163.Google Scholar
2. Lipsitt, H.A., in High-Temperature Ordered Intermetallic Alloys. ed. by Koch, C.C., Liu, C.T., and Stoloff, N.S. (Mater. Res. Soc. Proc. 39, Pittsburgh, PA 1985) pp. 351364.Google Scholar
3. Heredia, F. and Pope, D.P., Jol. de Phys. III, Special Issue Mechanisms of Deformation and Strength in Advanced Materials, Aussois, France, (1990) in Press.Google Scholar
4. Suzuki, T., Mishima, Y., and Miura, S, Trans. Iron Steel Inst. Jpn. 29. 1 (1989).Google Scholar
5. Dimiduk, D.M., Ph.D. Dissertation, Carnegie Mellon University (1989).Google Scholar
6. Hann, K.H. and Vedula, K., Scripta Metall. 23, 7 (1989).Google Scholar
7. Darolia, R. and Field, R., Private Communication.Google Scholar
8. Blackburn, M.J., Ruckle, D.L. and Bevan, C.E., AFML-TR-78–18, 55 (1978).Google Scholar
9. Blackburn, M.J. and Smith, M.P., AFWAL-TR-78–78, 126 (1978).Google Scholar
10. Hanamura, T. Uemori, R. and Tanino, M., Jol. Mat. Res. 3, 656 (1989).CrossRefGoogle Scholar
11. Tsujimoto, T. and Hashimoto, K., in High Temperature Ordered Intermetallic Alloys 111, ed. by. Kock, C.C., Liu, C.T., Stoloff, N.S., and Taub, A.I. (Mater. Res. Soc. Proc., Pittsburgh, PA 133, 1989) pp.391396.Google Scholar
12. Guruswamy, S., Rai, R.S., Faber, K.T. and Hirth, J.P., J. Appl. Phys. 62, 4130 (1987).Google Scholar
13. Pettifor, D.G., Mat. Sci. and Tech. 4, 675 (1988).Google Scholar
14. Meidema, A.R. and duChatel, P.F., in Theory of Alloy Phase Formation ed. by Bennet, L.H. (TMS-AIME, Pittsburgh, PA 1980) pp. 344387.Google Scholar
15. Mott, N.F. and Nabarro, F.R.N., Proc. Phys. Soc. Lond. 52, 86 (1940).Google Scholar
16. Cottrell, A.H., Report of a Conference on the Strength of Solids, (Phys. Soc. Lond. 1948) pp. 30.Google Scholar
17. Friedel, J., Dislocations, (Pergamon Press, Oxford, 1964).Google Scholar
18. Fleischer, R.L., Acta Metall. 9, 996 (1961).Google Scholar
19. Fleischer, R.L., in The Strengthening of Metals, ed. Peckner, D. (New York, Reinhold 1964) pp. 93140.Google Scholar
20. Labusch, R., Phys. Stat. Sol. 41, 659 (1970).Google Scholar
21. Labusch, R., J. Appl. Phys. 48, 4550 (1977).Google Scholar
22. Haasen, P., in Fundamental Aspects of Structural Alloy Design, ed. by Jaffee, R.I. and Wilcox, B.A. (Plenum, New York 1977) pp. 325.Google Scholar
23. Kocks, U.F., Met. Trans. A 16A, 2109 (1985).Google Scholar
24. Nabarro, F.R.N., in Dislocation Properties of Real Materials, (Institute of Metals, London 1985) pp. 152169.Google Scholar
25. Vitek, V., in Dislocation Properties of Real Materials. (Institute of Metals, London 1985) pp. 3050.Google Scholar
26. Vitek, V. and Duesbery, M.S., in Mechanical Properties of BCC Metals, ed. by Meshii, M., (TMS-AIME, Pittsburgh, PA 1982) pp. 311.Google Scholar
27. Yamaguchi, M. and Umakoshi, Y., in Structure and Properties of Crystal Defects, ed. by Paidar, V. and Lejcek, L. (Elsevier, Amsterdam 1984) pp. 131147.Google Scholar
28. Paider, V., Pope, D.P. and Vitek, V., Acta Metall. 32, 435 (1984).Google Scholar
29. Mott, N.F. and Nabarro, F.R.N., Report of a Conference on the Strength of Solids, (Phys. Soc. Lond. 1948) pp. 129.Google Scholar
30. Fleischer, R.L. and Hibbard, W.R., in The Relation Between the Structure and Mechanical Properties of Metals (H.M.S.O., London 1963) pp. 262.Google Scholar
31. Fleischer, R.L., Acta Metall. 10, 835 (1962).Google Scholar
32. Dom, J.E., Pietrokowsky, P., and Tietz, J.E., Trans. AIME., 188, 933 (1950).Google Scholar
33. Allen, N.P., Schofield, T.H., and Tate, A.E.L., Nature 168, 378 (1951).Google Scholar
34. Cottrell, A.H., Hunter, S.C., and Nabarro, F.R.N., Phil. Mag. 44, 1064 (1953).Google Scholar
35. Suzuki, H., in Dislocations and Mechanical Properties of Crystals ed. by Fischer, J.C., Johnston, W.G., Thomson, R. and Vreeland, T. Jr. (Wiley, New York 1956) pp. 361390.Google Scholar
36. Suzuki, H., in Strength of Metals and Alloys, ed. by Haasen, P., Gerold, V. and Kostorz, G., (Pergamon, Oxford 1980) pp. 15951614.Google Scholar
37. Suzuki, H., in Strength of Metals and Alloys. ICSMA 7, ed. by McQueen, H.J., Bailon, J-P., Dickson, J.I., Jonas, J.J. and Akben, M.G. (Pergamon, New York 1986) pp. 17271744.Google Scholar
38. Brown, N., Phil. Mag. 4, 693 (1959).Google Scholar
39. Yoo, M.H., Horton, J.A. and Liu, C.T., Acta Metall. 36, 2935 (1988).Google Scholar
40. Fisher, J., Acta Metall. 2, 9 (1954).Google Scholar
41. Fisher, J., Phys. Rev. 91, 232 (1953).Google Scholar
42. Flinn, P., in Strengthening Mechanisms in Solids, (Amer. Soc. Met., Metals Park, OH 1962) pp. 1750.Google Scholar
43. Cottrell, A.H., in Relation of Properties to Microstructure (Amer. Soc. Met., Metals Park, OH 1954) pp. 131162.Google Scholar
44. Ardley, G.W., Acta Metall. 3, 525 (1954).Google Scholar
45. Stoloff, N.S. and Davies, R.G., Prog. Mat. Sci. 13, 3 (1966).Google Scholar
46. Stoloff, N.S., in Strengthening Methods in Crystals, ed. by Kelly, A. and Nicholson, R. B. (Wiley, New York 1971) pp. 193259.Google Scholar
47. Friedel, J., in Electron Microscopy and Strength of Crystals, ed. by Thomas, G. and Washburn, J. (Interscience, New York 1963) pp. 605 49.Google Scholar
48. Nabarro, F.R.N., Phil. Mag. 35, 613 (1977).Google Scholar
49. Nabarro, F.R.N., Phil. Mag. 52, 785 (1985).Google Scholar
50. Labusch, R., Czech. J. Phys. B 38, 474 (1988).Google Scholar
51. Frost, H.J. and Ashby, M.F., Deformation-Mechanism Maps, (Pergamon, Oxford 1982) pp. 2042.Google Scholar
52. Dimiduk, D.M. and Miracle, D.B., in High Temperature Ordered Intermetallic Alloys III, ed. by. Kock, C.C., Liu, C.T., Stoloff, N.S., and Taub, A.I. (Materials Research Society Symposium Proceedings, Pittsburgh, PA 133, 1989) pp.349359.Google Scholar
53. Pascoe, R.T. and Newey, C.W.A., Met. Sci. Jol. 2, 138 (1968).Google Scholar
54. Umakoshi, Y. and Yamaguchi, M., Acta Metall. 24, 89 (1976).Google Scholar
55. Umakoshi, Y., Sakagami, T., Hirano, T. and Yamane, T., Acta Metall. 3a, 909 (1990).Google Scholar
56. Veyssière, P., in High Temperature Ordered Intermetallic Alloys III, ed. by. Kock, C.C., Liu, C.T., Stoloff, N.S., and Taub, A.I. (Mat. Res. Soc. Proc., Pittsburgh, PA 133, 1989) pp.175188.Google Scholar
57. Veyssière, P., Revue Phys. Appl. 23, 431 (1988).Google Scholar
58. Hazzledine, P.M. and Sun, Y., This Conference.Google Scholar
59. Duesbery, M.S. and Hirsch, P.B., in Dislocation Dynamics, ed. by Rosenfield, A.R., Hahn, G.T., Bement, A.L. Jr. and Jaffee, R.I. (McGraw Hill, New York 1968) pp. 5785.Google Scholar
60. Pasianot, R., Farkas, D. and Savino, E.J., Jol. de Phys. HII, Special Issue Mechanisms of Deformation and Strength in Advanced Materials, Aussois, France, (1990) In Press.Google Scholar
61. Yoo, M.H., Takasugi, T., Hanada, S. and Izumi, O., Mat. Trans. JIM 31, 435(1990).Google Scholar
62. Miracle, D.B., Ph.D. Dissertation, Ohio State University (1990).Google Scholar
63. Field, R.D., Lahrman, D.F. and Darolia, R., This Conference; Submitted Acta Metall. (1990).Google Scholar
64. Patrick, D.K., Chang, K-M., Miracle, D.B. and Lipsitt, H.A., This Conference.Google Scholar
65. Duesbery, M.S., Acta Metall. 31, 1747 (1983).Google Scholar
66. Duesbery, M.S. Proc. R. Soc. Lond. A 392, 175 (1984).Google Scholar
67. Wee, D.M., Pope, D.P. and Vitek, V., Acta Metall. 32, 829 (1985).Google Scholar
68. Dimiduk, D.M., Jol. de Phys. III, Special Issue Mechanisms of Deformation and Strength in Advanced Materials, Aussois, France, (1990) In Press.Google Scholar
69. Heredia, F., Ph.D. Dissertation, University of Pennsylvania (1990).Google Scholar
70. Sun, Y. and Hazzledine, P.M., Phil. Mag. A 58, 603 (1988).Google Scholar
71. Mills, M.J., Baluc, N., and Karnthaler, H.P., in High Temperature Ordered Intermetallic Alloys III, ed. by Kock, C.C., Liu, C.T., Stoloff, N.S. and Taub, A.I. (Materials Research Society Symposium Proceedings, Pittsburgh, PA, M3,3 1989) pp. 203208.Google Scholar
72. Caillard, D., Clement, N., Couret, A., Lours, P. and Coujou, A., Phil. Mag. Letters 58, 263 (1988).Google Scholar
73. Sun, Y., Ph.D. Dissertation, University of Oxford (1990).Google Scholar
74. Hirsch, P.B., Jol. de Phys. III, Special Issue Mechanisms of Deformation and Strength in Advanced Materials, Aussois, France, (1990) In Press.Google Scholar
75. Grinberg, B.A., Indenbaum, V.N. and Gornostyrev, YU.N., Phys. Met. Metall. 63 60 (1987).Google Scholar
76. Suzuki, T., Oya, Y. and Wee, D.M., Acta Metall. 28, 301 (1980).Google Scholar
77. Minonishi, Y. and Yoo, M.H., Phil. Mag. Ltr. 61, 203 (1990).Google Scholar
78. Guard, R.W. and Westbrook, J.H., Trans. TMS-AIME 215, 807 (1959).Google Scholar
79. Curwick, L.R., Ph.D. Dissertation, University of Minnnesota (1972).Google Scholar
80. Aoki, K. and Izumi, O., Phys. Status Solidi (a) 32a, 657 (1975).Google Scholar
81. Aoki, K. and Izumi, O., J. Jap. Inst. Met. 39, 1282 (1975).Google Scholar
82. Aoki, K. and Izumi, O., Phys. Stat. Sol.(a) 38, 587 (1976).Google Scholar
83. Ochiai, S., Mishima, Y., Yodogawa, M., and Suzuki, T., Trans. Jap. Inst. Met. 27, 32 (1986).Google Scholar
84. Mishima, Y., Ochiai, S., Yodogawa, M., and Suzuki, T., Trans. Jap. Inst. Met. 27, 41 (1986).Google Scholar
85. Mishima, Y., Ochiai, S., Hamao, N., Yodogawa, M. and Suzuki, T., Trans. Jap. Inst. Met. 27, 648 (1986).Google Scholar
86. Shinoda, T., Masuda-Jindo, K., Mishima, Y., and Suzuki, T., Phys. Rev. B 35, 2155 (1987).Google Scholar
87. Shinoda, T., Private Communication.Google Scholar
88. Noguchi, O., Oya, Y. and Suzuki, T., Metall. Trans A 12A, 1647 (1981).Google Scholar
89. Hazzledine, P.M., in Proc. Symp. on Interactions Between Dislocations and Point Defects, (United Kingdom Atom Energy Authority Res. Group, Harwell, UK 1968) pp. 72349.Google Scholar
90. Lall, C., Chin, S. and Pope, D.P., Met. Trans. 10A, 1323 (1979).Google Scholar
91. Wee, D.M. and Suzuki, T., Trans. Japan Inst. Met. 20, 634 (1979).Google Scholar
92. Wee, D.M., Noguchi, O., Oya, Y. and Suzuki, T., Trans. Japan Inst. Met. 21, 237 (1980).Google Scholar
93. Suzuki, T., Oya, Y. and Ochiai, S., Metall. Trans. A 15A, 173 (1984).Google Scholar
94. Yodogawa, M., Wee, D.M., Oga, Y. and Suzuki, T., Scripta Metall. 14, 849 (1980).Google Scholar
95. Wee, D.M. and Suzuki, T., Trans. Jap. Inst. Met. 22, 163 (1981).Google Scholar
96. Suzuki, T. and Oya, Y., J. Mat. Sci. 16, 2737 (1981).Google Scholar
97. Ochiai, S., Oya, Y. and Suzuki, T., Acta Metall. 32, 289 (1984).Google Scholar
98. Duesbery, M.S., Acta Metall. 31, 1759 (1983).Google Scholar
99. Richards, M.J. and Cahn, J.W., Acta Metall. 18, 1263 (1971).Google Scholar
100. Freeman, A.J., Fu, C.L., and Lee, J.I.: in preparation.Google Scholar
101. Douin, J., Veyssière, P. and Beauchamp, P., Phil. Mag. A 54, 375 (1986).Google Scholar
102. Baluc, N., Karnthaler, H.P., and Mills, M.J., Inst. Phys. Conf. Ser. No. 93 2, 463 (1988).Google Scholar
103. Bontemps, C. and Veyssière, P., Phil. Mag. Lett. (1990) in press.Google Scholar
104. Korner, A., Phil. Mag. A 58 507 (1988).Google Scholar
105. Esterling, D.M., Som, D.K., and Chatterjee, A. K., J. Phys. F: Met. Phys. 17, 109 (1987).Google Scholar
106. Daw, M.S. and Baskes, M.I., Phys. Rev. Ltrs. 50, 1285 (1983).Google Scholar
107. Foiles, S.M. and Daw, M.S., J. Mater. Res. 2, 5 (1987).Google Scholar
108. Freeman, A.J., Hong, T., Lin, W. and Xu, J-H., This Conference.Google Scholar
109. Woodward, C., MacLaren, J.M. and Rao, S., This Conference.Google Scholar
110. Fu, C.L. and Yoo, M.H., This Conference.Google Scholar