Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T17:44:11.021Z Has data issue: false hasContentIssue false

Defects and Microstructure in Optimized a-Si:Ge:H - New Results from Electron Spin Resonance Experiments

Published online by Cambridge University Press:  15 February 2011

C. Malten
Affiliation:
Institut fur Schicht- und Ionentechnik, Forschungszentrum Jülich, 52425 Jülich, Germany
F. Finger
Affiliation:
Institut fur Schicht- und Ionentechnik, Forschungszentrum Jülich, 52425 Jülich, Germany
J. Fölsch
Affiliation:
Institut fur Schicht- und Ionentechnik, Forschungszentrum Jülich, 52425 Jülich, Germany
T. Kulessa
Affiliation:
Institut fur Schicht- und Ionentechnik, Forschungszentrum Jülich, 52425 Jülich, Germany
H. Wagner
Affiliation:
Institut fur Schicht- und Ionentechnik, Forschungszentrum Jülich, 52425 Jülich, Germany
S. Ray
Affiliation:
Indian Association For The Cultivation Of Science, Calcutta - 700032, India
A. R. Middya
Affiliation:
Indian Association For The Cultivation Of Science, Calcutta - 700032, India
S. Hazra
Affiliation:
Indian Association For The Cultivation Of Science, Calcutta - 700032, India
Get access

Abstract

Amorphous silicon germanium alloys with improved properties for photovoltaic applications are investigated by electron spin resonance. Spin densities in this material are strongly reduced with optimized deposition conditions. Still the Ge dangling bond remains the dominating deep defect and the ratio of Ge over Si dangling bond defects is not much changed. The spin resonance spectra of these samples show distinctive differences from conventional material. The superposition signal can not be deconvoluted into modified Si- and Ge- dangling bond resonances as done previously. Instead a lineshape asymmetry or additional resonances are needed to deconvolute the spectra. The development of g-values with alloy composition indicate a more homogeneous chemical ordering in optimized material in agreement with other experimental data.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Paul, W., Street, R. A. and Wagner, S., Electronic, J. Materials 22, 39 (1993)Google Scholar
[2] Fölsch, J., Finger, F., Kulessa, T., Siebke, F. and Wagner, H., this conferenceGoogle Scholar
[3] Finger, F., Fuhs, W., Beck, G. and Carius, R., J. Non-Cryst. Solids 97&98, 1051 (1987)Google Scholar
[4] Stutzmann, M., Street, R.A., Tsai, C.C., Boyce, J.B. and Ready, S.E., J. Appl. Phys. 66, 569 (1989)Google Scholar
[5] Fuhs, W. and Finger, F., J. Non. Cryst. Solids 114, 1387 (1989)Google Scholar
[6] Malten, C., Finger, F. and Wagner, H. (unpublished)Google Scholar
[7] Graeff, C.F.O., Stutzmann, M. and Brandt, M.S., Phys. Rev B 49, 11028 (1994)Google Scholar
[8] Carius, R., Finger, F. and Fuhs, W., J. Non-Cryst. Solids 97&98, 1067 (1987)Google Scholar
[9] Ristein, J., Finger, F., Fuhs, W. and Liedtke, S., Sol. State. Comm. 67, 211 (1988)Google Scholar
[10] Mück, A. and Zastrow, U. (private communication)Google Scholar
[11] Lee, J.-K. and Schiff, E. A., J. Non-Cryst. Solids 114, 423 (1989)Google Scholar
[12] Biegelsen, D. K. and Stutzmann, M., Phys. Rev. B 33, 3006 (1986)Google Scholar
[13] Middya, R. A., Ray, S., Jones, S.J. and Williamson, D.L. (unpublished)Google Scholar