Skip to main content Accessibility help

Defect Photoluminescence of TiO2 Nanotubes

  • Jeanne Louise McHale (a1) and Candy C. Mercado (a2)


Photoluminescence (PL) spectroscopy of nanocrystalline TiO2 using ultraviolet light excitation reveals a range of intra-bandgap defect states which emit at visible wavelengths. In this study we use 350 nm excitation to probe the luminescent defect states of TiO2 nanotubes fabricated by anodization of titanium. The nanotubes show a broad visible luminescence from 450 to 700 nm with a peak at 520-550 nm or 2.4-2.3 eV. The intensity of nanotube PL is orders of magnitude lower than that of nanoparticulate anatase and P25 (mixed-phase anatase/rutile) films of comparable thickness. Similar to the PL of the nanoparticles, the nanotube PL is increased by vacuum annealing. The nature of the nanotube defects is investigated through shifts in the intensity and shape of the PL spectra in hole or electron scavenging environments. We find the PL intensity of the nanotubes to be less dependent on environment than that of conventional TiO2 nanoparticles. We conclude that there are two inter-related reasons for decreased intensity and decreased environmental dependence of PL from TiO2 nanotubes as compared to nanoparticles: decreased density of defect states and improved carrier transport.



Hide All
1 Varghese, O., Paulose, M., Grimes, C., Nature Nanotech. 4, 592 (2009)
2 Jennings, J., Ghicov, A., Peter, L., Schmuki, P., and Walker, A., J. Am. Chem. Soc. 130, 13364 (2008)
3 Zhu, K., Vinzant, T., Neale, N., Frank, A., Nano Letters 7 No. 12, 3739 (2007)
4 Li, S., Zhang, G., Guo, D., Yu, L., and Zhang, W., J. Phys. Chem C 113, 12759 (2009)
5 Zhu, K., Kopidakis, N., Neale, N., Lagemaat, J. van de, and Frank, A., J. Phys. Chem. B 110, 25174 (2006)
6 Grimes, C., J. Mater. Chem. 17, 1451 (2007)
7 Zhu, K., Neale, N., Miedaner, A., and Frank, A., Nano Letters 7 No. 1, 69 (2007)
8 Ghicov, A., Albu, S., Hahn, R., Kim, D., Stergiopoulos, T., Kunze, J., Schiller, C., Falaras, P., and Schmuki, P., Chem. Asian J. 4, 520 (2009)
9 Macdonald, D., J. Electrochem. Soc. 140, L27 (1993)
10 Mor, G., Varghese, O., Paulose, M., Shankar, K., and Grimes, C., Sol. En Mat. & Solar Cells 90 2011 (2006)
11 Ohsaka, T., Izumi, F., Fujiki, Y., J. Raman Spect. 7, 321 (1978)
12 Knorr, F., Zhang, D., McHale, J., Langmuir 23, 8686 (2007)
13 Knorr, F., Mercado, C., McHale, J., J. Phys. Chem. C 112, 12786 (2008)
14 Heinrich, V., Dresselhaus, G., Zeiger, H., Phys. Rev. Lett. 36, (1976)
15 Zhang, D., Downing, J., Knorr, F., McHale, J., J. Phys. Chem. B 110, 21890 (2006)
16 Rich, C. C., Knorr, F. J., McHale, J. L., submitted to the 2010 MRS Spring Meeting Proceedings.


Related content

Powered by UNSILO

Defect Photoluminescence of TiO2 Nanotubes

  • Jeanne Louise McHale (a1) and Candy C. Mercado (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.