Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-17T16:53:59.988Z Has data issue: false hasContentIssue false

Defect Pair Formation by Implantation-Induced Stresses in High-Dose Oxygen Implanted Silicon-on-Insulator Material

Published online by Cambridge University Press:  22 February 2011

J.D. Lee
Affiliation:
Chemical, Bio & Materials Engineering, Arizona State University, Tempe, AZ 85287
J.C. Park
Affiliation:
Chemical, Bio & Materials Engineering, Arizona State University, Tempe, AZ 85287
D. Venables
Affiliation:
Chemical, Bio & Materials Engineering, Arizona State University, Tempe, AZ 85287
S.J. Krause
Affiliation:
Chemical, Bio & Materials Engineering, Arizona State University, Tempe, AZ 85287
P. Roitman
Affiliation:
Semiconductor Electronics Div., NIST, Gaithersberg, MD 20899
Get access

Abstract

Defect microstructure and the near-surface strain of high-dose oxygen implanted silicon-on-insulator material (SIMOX) were investigated as a function of dose, implant temperature, and annealing temperature by transmission electron microscopy and high resolution x-ray diffraction. Dislocation half loops (DHLs) begin to form by stress assisted climb at a critical stress level due to implantation-induced damage. DHLs evolve into through-thickness defect (TTD) pairs by expansion during annealing. Both DHL and TTD-pair density increase with higher implant dose and lower implant temperature. Possible methods for defect density reduction are suggested based on the results of this study.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Colinge, J.P., SOI Technology, Kluwer Press (1991).Google Scholar
2 Marsh, C.D., Nejim, A., Li, Y., Booker, G.R., Hemment, P.L.F., Chater, R.J. and Kilner, J.A., Nuc. Inst. Meth., B74, 197 (1993).Google Scholar
3 Visitserngtrakul, S., Cordts, B. and Krause, S., Mat. Res. Soc. Symp. Proc., 157, 161 (1990).Google Scholar
4 Park, J.C., Lee, J.D., Venables, D., Krause, S.J. and Roitman, P., Mat. Res. Soc. Symp. Proc., 229, 153 (1993).Google Scholar
5 Hill, D., Fraundorf, P. and Fraundorf, G., J. Appl. Phys., 63, 4933 (1988).Google Scholar
6 Crean, G.M., Lynch, S., Greef, R., Stoemenos, J., Rossow, U. and Richter, W., Mat. Res. Soc. Symp. Proc., 221, 139 (1992).Google Scholar
7 Lee, J. D., Park, J.C., Venables, D., Krause, S. and Roitman, P., Appl. Phys. Lett., 63, 3330 (1993).Google Scholar
8 Visitserngtrakul, S., Jung, C.O., Ravi, T.S., Cordts, B., Burke, D. and Krause, S.J., Inst. Phys. Conf. Ser., 100, 557 (1989).Google Scholar
9 De Veirman, A., Van Landuyt, J., Vanhellemont, J., Maes, H. and Yallup, K., Vacuum, 42, 367 (1991)Google Scholar
10 Stoemenos, J., Reeson, K.J., Robinson, A.K. and Hemment, P.L.F., J. Appl. Phys., 69, 793 (1991).Google Scholar
11 Venables, D. and Jones, K.S., Nuc. Inst. Meth., B74, 65 (1993).Google Scholar
12 Venables, D., Jones, K.S., Namavar, F. and Manke, J.M., Mat. Res. Soc Symp. Proc., 235, 103 (1992).Google Scholar
13 Narayan, J. and Jagannadham, K., J. Appl. Phys., 62, 1694 (1987).Google Scholar
14 Heydenreich, J., Inst. Phys. Conf. Ser., 104, 131 (1989).Google Scholar
15 Homma, Y., Yoshima, M. and Hayashi, T., Japan. J. Appl. Phys., 21, 890 (1982).Google Scholar
16 Nakashima, S. and Izumi, K., J. Mater. Res., 8, 523 (1993).Google Scholar