Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T13:22:45.655Z Has data issue: false hasContentIssue false

Defect Identification in Silicon Using Electron Nuclear Double Resonance

Published online by Cambridge University Press:  28 February 2011

C.A.J. Ammerlaan
Affiliation:
Natuurkundig Laboratorium der Universiteit van Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands
M. Sprenger
Affiliation:
Natuurkundig Laboratorium der Universiteit van Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands
R. Van Kemp
Affiliation:
Natuurkundig Laboratorium der Universiteit van Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands
D.A. Van Wezep
Affiliation:
Natuurkundig Laboratorium der Universiteit van Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands
Get access

Abstract

The application of electron nuclear double resonance (ENDOR) for identification and characterization of point defects in silicon is reviewed. Taking the vacancy and the boron-vacancy complex as examples it is discussed how ENDOR can provide information on the atomic and electronic structure of paramagnetic centers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Feher, G., Phys. Rev. 103, 834 (1956).Google Scholar
2. Feher, G., Phys. Rev. 114, 1219 (1959).Google Scholar
3. Feher, G., Fuller, C.S. and Gere, E.A., Phys. Rev. 107, 1462 (1957).Google Scholar
4. Eisinger, J. and Feher, G., Phys. Rev. 109, 1172 (1958).Google Scholar
5. Hale, E.B. and Mieher, R.L., Phys. Rev. 184, 739 (1969).Google Scholar
6. Watkins, G.D. and Ham, F.S., Phys. Rev. B1, 4071 (1970).Google Scholar
7. Ludwig, G.W., Phys. Rev. 137, A1520 (1965).Google Scholar
8. Greulich-Weber, S., Niklas, J.R. and Spaeth, J.-M., J. Phys. C: Solid State Phys. 17, L911 (1984).Google Scholar
9. Niklas, J.R. and Spaeth, J.-M., Solid State Comm. 46, 121 (1983).Google Scholar
10. Wezep, D.A. van and Ammerlaan, C.A.J., J. Electron. Mat. 14a, 863(1985), and to be published.Google Scholar
11. Woodbury, H.H. and Ludwig, G.W., Phys. Rev. 117, 102 (1960).Google Scholar
12. Ludwig, G.W. and Woodbury, H.H., Phys. Rev. 117, 1286 (1960).Google Scholar
13. Greulich-Weber, S., Niklas, J.R., Weber, E.R. and Spaeth, J.-M., Phys. Rev. B30, 6292 (1984).Google Scholar
14. Woodbury, H.H. and Ludwig, G.W., Phys. Rev. 117, 1287 (1960).Google Scholar
15. Ludwig, G.W. and Woodbury, H.H., Solid State Phys. 13, 223 (1962).Google Scholar
16. Watkins, G.D. and Corbett, J.W., Phys. Rev. 134, A1359 (1964).Google Scholar
17. Watkins, G.D., Phys. Rev. 155, 802 (1967).Google Scholar
18. Elkin, E.L. and Watkins, G.D., Phys. Rev. 174, 881 (1968).Google Scholar
19. Brower, K.L., Phys. Rev. B1, 1908 (1970).Google Scholar
20. Watkins, G.D., Phys. Rev. B12, 5824 (1975).Google Scholar
21. Wit, J.G. de, Sieverts, E.G. and Ammerlaan, C.A.J., Phys. Rev. B14,3494 s(1976).Google Scholar
22. Sieverts, E.G., Muller, S.H. and Ammerlaan, C.A.J., Phys. Rev. B18,6834 (1978).Google Scholar
23. Sprenger, M., Muller, S.H. and Ammerlaan, C.A.J., Physica 116B, 224 (1983).Google Scholar
24. Sprenger, M., Kemp, R. van, Sieverts, E.G. and Ammerlaan, C.A.J., J. Electron. Mat. 144a, 815 (1985).Google Scholar
25. Kemp, R. van, Sieverts, E.G., Sprenger, M. and Ammerlaan, C.A.J., to be published.Google Scholar
26. Watkins, G.D., Phys. Rev. B13,,2511(1976).Google Scholar
27. Watkins, G.D., Inst. Phys. Conf. Series 16, 228 (1973).Google Scholar
28. Lannoo, M., Phys. Rev. B28, 2403 (1983).Google Scholar