Hostname: page-component-7bb8b95d7b-lvwk9 Total loading time: 0 Render date: 2024-09-18T18:55:55.977Z Has data issue: false hasContentIssue false

Defect Formation by Single Ion Impacts on Highly Oriented Pyrolytic Graphite Observed by Scanning Tunneling Microscopy

Published online by Cambridge University Press:  21 February 2011

K. P. Reimann
Affiliation:
1. Physikalisches Institut Sonderforschungsbereich 345, Bunsenstr. 9, D-37073 Göttingen, Germany
W. Bolse
Affiliation:
1. Physikalisches Institut 2. Physikalisches Institut, Universität Göttingen, Bunsenstr. 9, D-37073 Göttingen, Germany Sonderforschungsbereich 345, Bunsenstr. 9, D-37073 Göttingen, Germany
U. Geyer
Affiliation:
1. Physikalisches Institut Sonderforschungsbereich 345, Bunsenstr. 9, D-37073 Göttingen, Germany
G. Von minnigerode
Affiliation:
1. Physikalisches Institut Sonderforschungsbereich 345, Bunsenstr. 9, D-37073 Göttingen, Germany
K. P. Lieb
Affiliation:
1. Physikalisches Institut 2. Physikalisches Institut, Universität Göttingen, Bunsenstr. 9, D-37073 Göttingen, Germany Sonderforschungsbereich 345, Bunsenstr. 9, D-37073 Göttingen, Germany
Get access

Abstract

(0001) surfaces of highly oriented pyrolytic graphite (HOPG) were irradiated at 77K with 132Xe+ ions at energies between 50 keV and 900 keV. The ion fluences ranged between 1011 ions/cm2 and 1015 ions/cm2. Scanning tunneling microscopy (STM) was applied to image the irradiation induced defects at the surfaces. In case of orthogonal incidence and small ion fluence each incident ion induces one single hillock at the surface. These hillocks have typical lateral diameters of 2 nm and heights of several à. In many cases measurements of the hillocks with atomic resolution show disordered atomic arrangements. The hillocks are interpreted as the local volume expansion due to surface-near self-interstitials generated in the collision cascades of the ions. The high mobility of these interstitials parallel to the (0001) planes leads to a formation of interstitial clusters which cause the larger hillocks. Irradiation at an angle of incidence of 75° with respect to the surface normal effects a higher density of hillocks due to the higher number of recoils stopped in the uppermost lattice planes. The hillocks are arranged in chains which are aligned in the direction of the incident beam. Each of these chains marks a single collision cascade.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Dresselhaus, M. S. and Kalish, R., Ion Implantation in Diamond, Graphite and Related Materials, (Springer Verlag, Berlin, 1992)Google Scholar
2 Boise, W., Mat. Sci. Eng. R12, 53 (1994)Google Scholar
3 Ziegler, J. F. and Biersack, J. P., The Stopping and Range of Ions in Solids, (Pergamon Press, New York, 1985)Google Scholar
4 Porte, L. et al. , Nucí. Instr. Methods B, 44, 116 (1989)Google Scholar
5 Coratger, R., Claverie, A., Ajustron, F. and Beauvillain, J., Surf. Sci. 227, 7 (1990)Google Scholar
6 Coratger, R. et al. , Surf. Sci. 262,208 (1992)Google Scholar
7 Uhrmacher, M. et al. , Nucí. Instr. Methods B, 9, 234 (1985)Google Scholar
8 Besocke, K., Surf. Sci. 181, 145 (1987)Google Scholar
9 Wilson, I. H. et al. , Phys. Rev. B, 38,12 (1988)Google Scholar
10 Wilson, I. H. et al. , Appl. Phys. Lett. 53,21 (1988)Google Scholar
11 Kelly, B. T., Physics of Graphite, (Applied Science Publishers, Barking, U. K., 1981)Google Scholar
12 Iwata, T., J. Phys. Soc. Jpn. 33, 1060 (1972)Google Scholar
13 Maeta, H., Iwata, T. and Okuda, S., Phys. Lett. A, 53, 295 (1975)Google Scholar
14 Mamin, H. J. et al. , Phys. Rev. B, 34, 9015 (1986)Google Scholar
15 Reimann, K. P., diploma thesis, University of Göttingen, 1994 Google Scholar
16 Wallace, P. R., Solid State Communications 4,521 (1966)Google Scholar