Skip to main content Accessibility help
×
Home

Defect Evolution from Low Energy, Amorphizing, Germanium Implants on Silicon

  • Andres F. Gutierrez (a1), Kevin S. Jones (a2) and Daniel F. Downey (a3)

Abstract

Plan-view transmission electron microscopy (PTEM) was used to characterize defect evolution upon annealing of low-to-medium energy, 5-30 keV, germanium implants into silicon. The implant dose was 1 × 1015 ions/cm2, sufficient for surface amorphization. Annealing of the samples was done at 750 °C in nitrogen ambient by both rapid thermal annealing (RTA) and conventional furnace, and the time was varied from 10 seconds to 360 minutes. Results indicate that as the energy drops from 30 keV to 5 keV, an alternate path of excess interstitials evolution may exist. For higher implant energies, the interstitials evolve from clusters to {311}'s to loops as has been previously reported. However, as the energy drops to 5 keV, the interstitials evolve from clusters to small, unstable dislocation loops which dissolve and disappear within a narrow time window, with no {311}'s forming. These results imply there is an alternate evolutionary pathway for {311} dissolution during transient enhanced diffusion (TED) for these ultra-low energy implants.

Copyright

References

Hide All
1. Myers, E., Rozgonyi, G. A., Sadana, D. K., Maszara, W., Wortman, J. J. and Narayan, J., Mat. Res. Soc. Fall Meeting, Symposium B, 1985.
2. Ozturk, Mehmet C., Wortman, Jimmie J., Osburn, Carlton M., Ajmera, Atul, Rozgonyi, George A., Frey, Eric, Chu, Wei-Kan and Lee, Clinton, IEEE Transactions on Electron Devices, 1988. 35(5): p. 659667.
3. Hong, Shin Nam, Ruggles, Gary A., Wortman, Jimmie J. and Ozturk, Mehmet C., IEEE Transactions on Electron Devices, 1991. 38(3): p. 476486.
4. Murrell, A. J., Collart, E. J. and Foad, M. A., J. Vac. Sci. Technol. B, 2000. 18(1): p. 462467.
5. Eaglesham, D. J., Stolk, P. A., Gossmann, H.-J. and Poate, J. M., Appl. Phys. Lett., 1994. 65(18): p. 23052307.
6. Jones, K. S., Liu, J., Zhang, L., Krishnamoorthy, V. and DeHoff, R. T., Nucl. Instr. and Meth. in Phys. Res. B, 1995. 106: p. 227232.
7. Eaglesham, D. J., Agarwal, A., Haynes, T. E., Gossmann, H.-J., Jacobson, D. C. and Poate, J. M., Nucl. Instr. and Meth. in Phys Res. B, 1996. 120: p. 14.
8. Agarwal, Aditya, Haynes, Tony E., Eaglesham, David J., Gossmann, Hans-J., Jacobson, Dale C., Poate, John M. and Erokhin, Yu E., Appl. Phys. Lett., 1997. 70(23): p. 33323334.
9. Li, Jinghong and Jones, Kevin S., Appl. Phys. Lett., 1998. 73(25): p. 37483750.
10. Cowern, N. E. B., Mannino, G., Roozeboom, F., Stolk, P. A., Huizing, H. G. A., Berkum, J. G. M. van, Toan, N. N. and Woerlee, P. H.. in 195th ECS Meeting. 1999. Seattle, WA.
11. Bharatan, S., in Material and Process Characterization of Ion Implantation, Current, M.I. and Yarling, C.B., Eds. 1997, Ion Beam Press: Austin, TX. p. 224243.
12. Liu, Jinning, Jones, Kevin S., Downey, Daniel F. and Mehta, Sandeep, Mat. Res. Soc. Symp. Proc., 1999. 568: p. 914.

Related content

Powered by UNSILO

Defect Evolution from Low Energy, Amorphizing, Germanium Implants on Silicon

  • Andres F. Gutierrez (a1), Kevin S. Jones (a2) and Daniel F. Downey (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.