Skip to main content Accessibility help

Defect annihilation in chemo-epitaxial directed self-assembly: Computer simulation and Self-Consistent Field Theory

  • Marcus Müller (a1), Weihua Li (a1) (a2), Juan Carlos Orozco Rey (a1) and Ulrich Welling (a1)


Except at the order-disorder transition, defects in lamella-forming block copolymers have a free energy of several hundreds kBT where kBT denotes the thermal energy scale. Thus, they cannot be conceived as equilibrium fluctuations around a perfectly ordered state. Instead, defects, which are observed in experiments, are formed in the course of self-assembly. Their behavior is dictated by the kinetics of structure formation, in particular, the kinetic pathways of defect motion and annihilation.

Computational modeling can contribute to optimize materials parameters such as film thickness, interaction between copolymer blocks and substrate, geometry of confinement, in order to avoid the formation of defects in the early stages of structure formation or facilitate defect annihilation. Computations also provide fundamental insights into the universal physical mechanisms of directing the self-assembly, addressing the equilibrium structure and thermodynamics as well as the kinetics of self-assembly.

We present computer simulation of highly coarse-grained particle-based models and self-consistent field calculations that allow us to access the long time and large length scales associated with self-assembly. These calculations provide information about the free-energy landscape and mechanisms of defect annihilation in thin films. Additionally, opportunities for directing the kinetics of self-assembly by temporal changes of thermodynamic conditions are discussed.



Hide All
1. Bates, F. S. and Fredrickson, G. H., Ann. Rev. Phys. Chem. 41, 525 (1990).
2. Hammond, M. R., Cochran, E., Fredrickson, G. H., and Kramer, E. J., Macromolecules 38, 6575 (2005).
3. Segalman, R. A., Hexemer, A., Hayward, R. C., and Kramer, E. J., Macromolecules 36, 3272 (2003).
4. Harrison, C., Adamson, D. H., Cheng, Z., Sebastian, J. M., Sethuraman, S., Huse, D. A., Register, R. A. and Chaikin, P. M., Science 290, 1558 (2000).
5. Harrison, C., Cheng, Z., Sethuraman, S., Huse, D. A. and Chaikin, P. M., Phys. Rev. E 66, 011706 (2002).
6. Nagpal, U., Müller, M., Nealey, P.F., and de Pablo, J.J., ACS Macro Letters 1, 418 (2012).
7. Stoykovich, M. P., Kang, H., Daoulas, K. C., Liu, G., Liu, C. C., de Pablo, J. J., Müller, M. and Nealey, P. F., ACS Nano 1, 168 (2007).
8. Daoulas, K. C., Cavallo, A., Shenhar, R. and Müller, M., Phys. Rev. Lett. 105, 108301 (2010).
9. Xie, N., Li, W.H., Qiu, F. and Shi, A.C., ACS Macro Lett. 3, 906 (2014).
10. Li, W., Xie, N., Qiu, F., Yang, Y., and Shi, A.C., J Chem. Phys. 134, 144901 (2011).
11. Vega, D. A., Harrison, C. K., Angelescu, D. E., Trawick, M. L., Huse, D. A., Chaikin, P. M. and Register, R. A., Phys. Rev. E 71, 061803 (2005).
12. Campbell, I. P., Lau, G. J., Feaver, J. L. and Stoykovich, M. P., Macromolecules 45, 15871594 (2012).
13. Li, W. H., Nealey, P. F., de Pablo, J. J. and Müller, M., Phys. Rev. Lett. 113, 168301 (2014).
14. Horvat, A., Sevink, G. J. A., Zvelindovsky, A. V., Krekhov, A. and Tsarkova, L., ACS Nano 2, 1143 (2008).
15. Peach, M., and Koehler, J.S., Phys. Rev. 80, 436 (1950).
16. Müller, M., J. Stat. Phys. 145, 967 (2011).
17. Daoulas, K. C. and Müller, M., J. Chem. Phys. 125, 184904 (2006).
18. Daoulas, K. C., Müller, M., Stoykovich, M. P., Papakonstantopoulos, Y. J., de Pablo, J. J., Nealey, P. F., Park, S. M. and Solak, H. H., J. Polym. Sci. B: Polymer Physics 44, 2589 (2006).
19. Müller, M. and Daoulas, K. C., J. Chem. Phys. 129, 164906 (2008).
20. Izumi, K., Laachi, N., Man, X., Delaney, K. T., and Fredrickson, G. H., Proc. SPIE 9049, 904922 (2014).
21. Müller, M. and Daoulas, K.Ch., J. Chem. Phys. 128, 024903 (2008).
22. Müller, M., Daoulas, K.Ch., and Norizoe, Y., Phys. Chem. Chem. Phys 11, 2087 (2009).
23. Müller, M., Smirnova, Y.G., Marelli, G., Fuhrmans, M., and Shi, A.C., Phys. Rev. Lett. 108, 228103 (2012).
24. Reister, E., Müller, M. and Binder, K., Phys. Rev. E 64, 041804 (2001).
25. Müller, M. and Schmid, F., Adv. Polym. Sci. 185, 1 (2005).
26. Maragliano, L., Fischer, A., Vanden-Eijnden, E. and Ciccotti, G., J. Chem. Phys. 125, 024106 (2006).
27. W. E, Ren, W. and Vanden-Eijnden, E., J. Chem. Phys. 126, 164103 (2007).
28. Naughton, J.R. and Matsen, M.W., Macromolecules 35, 5688 (2002).
29. LeSar, R., Annual Rev. Condens. Mat. Phys. 5, 375 (2014)
30. Müller, M. and Daoulas, K. C., Phys. Rev. Lett. 107, 227801 (2011).
31. Takahashi, H., Laachi, N., Delaney, K.T., Hur, S.M., Weinheimer, C.J., Shykind, D., and Fredrickson, G.H., Macromolecules 45, 6253 (2012).
32. Edwards, E. W., Stoykovich, M. P., Müller, M., Solak, H. H., de Pablo, J. J. and Nealey, P. F., J. Polym. Sci. B: Polymer Physics 43, 3444 (2005).
33. Glaser, J., Medapuram, P., Beardsley, T.M., Matsen, M.W., and Morse, D.C., Phys. Rev. Lett. 113, 068302 (2014).
34. Fredrickson, G. H. and Helfand, E., J. Chem. Phys. 87, 697 (1987).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed