Skip to main content Accessibility help
×
Home

Deep Levels in 4H Silicon Carbide Epilayers Induced by Neutron-Irradiation up to 1016 n/cm2

  • Anna Cavallini (a1), Antonio Castaldini (a2), Filippo Nava (a3), Paolo Errani (a4) and Vladimir Cindro (a5)...

Abstract

We investigated the electronic levels of defects introduced in 4H-SiC α-particle detectors by irradiation with 1 MeV neutrons up to a fluence equal to 8x1015 n/cm2. As well, we investigated their effect on the detector radiation hardness. This study was carried out by deep level transient spectroscopy (DLTS) and photo-induced current transient spectroscopy (PICTS). As the irradiation level approaches fluences in the order of 1015 n/cm2, the material behaves as highly resistive due to a very great compensation effect but the diodes are still able to detect with a acceptably good charge collection efficiency (CCE) equal to 80%. By further increasing fluence, CCE decreases reaching the value of ≈ 20% at fluence of 8x1015 n/cm2.

The dominant peaks in the PICTS spectra occur in the temperature range [400, 700] K. Enthalpy, capture cross-section and order of magnitude of the density of such deep levels were calculated. In the above said temperature range the deep levels associated to the radiation induced defects play the key role in the degradation of the CCE. Two deep levels at Et = 1.18 eV and Et = 1.50 eV are likely to be responsible of such dramatic decrease of the charge collection efficiency. These levels were reasonably associated to an elementary defect involving a carbon vacancy and to a defect complex involving a carbon and a silicon vacancy, respectively.

Copyright

References

Hide All
1 Bruzzi, M., Michel, M., RD50 Status Report 2002/2003 CERN-LHCC-2003-058 and LHCC-RD-002.
2 Neudeck, P G., Okojie, R S., Chen, Liang-Yu, Proc. IEEE, 90, (6), (2002).
3 Spetz, A. Lloyd, Tobias, P., Baranzahi, A., Martensson, P., Lundstrom, I., IEEE Trans. Electr. Dev. 46, 561, (1999).
4 Dulloo, A.R., Ruddy, F.H., Seidel, J.G., Davison, C., Flinchbaugh, T., Daubenspeck, T.. IEEE Trans. Nucl. Sci. NS–46, 275, (1999).
5 Seshadri, S., Dulloo, A.R., Ruddy, F.H., Seidel, J.G., Rowland, L.B.. IEEE Trans. Electr. Dev. NS–46, 567, (1999)
6 Nava, F., Vittone, E., Vanni, P., Verzellesi, G., Fuochi, P.G., Lanzieri, C., Glaser, M.. Nucl. Instrum. Meth. A505, 645, (2003)
7 Nava, F., Vanni, P., Verzellesi, G., Castaldini, A., Cavallini, A.. Mater. Sci. Forum, 353–356, 757, (2001)
8 Kalinina, E., Kholuyanov, G., Onushkin, G., Davydov, D., Strel'chuk, A., Konstantinov, A., Hallén, A., Skuratov, V. and Kuznetsov, A.. Mater. Sci. Forum, 483–485, 377, (2005)
9 Castaldini, A., Cavallini, A., Rigutti, L. and Nava, F.. Mater.Sci.Forum 483–485, 359, (2005)
10 Strel'chuck, A.M., kalinina, E.V., Konstantinov, A.O., Hallen, A.. Mater. Sci. Forum, 483–485, 993, (2005)
11 Rogalla, M., Runge, K., Soldner, A.,-Rembold. Nucl. Phys. B78, 516, (1999)
12 Cunningham, W., Melone, J., Horn, M., Kazukauskas, V., Roy, P., Doherty, F., Glaser, M., Vaitkus, J., Rahman, M.,. Nucl. Instrum. Meth. A509, 127, (2003)
13 Grant, J., Cunningham, W., Blue, A., Vaitkus, J., Gaubas, E., Rahman, M.,. (6TH Int. Work on Rad. Imag. Detectors IWORID-2004, July 25-29, Glasgow/Scotland)
14 Lemeilleur, F., Linstrom, G., Watts, S.,. Moll, M., ROSE-RD48, (2002)
15 Lindstrom, G., Moll, M., Fretwurst, E., Nucl. Instrum. Meth. A466, 308, (2001)
16 Castaldini, A., Cavallini, A., Rigutti, L., Nava, F., Ferrero, S., Giorgis, F.. J. Appl. Phys, 98, (2005)
17 Alfieri, G., Monakhov, E.V., Linnarsson, M.K. and G, B.,. Svensson. Mater.Sci.Forum 483–485, 365, (2005)
18 Nava, F., Vanni, P., Bruzzi, M., Lagomarsino, S., Sciortino, S., Wagner, G., Lanzieri, C.. IEEE Trans. Nucl. Sci. NS–53, 238, (2004)
19 Sciortino, S., Hartjes, F., Lagomarsino, S., Nava, F., Brianzi, M., Cindro, V., Lanzieri, C., Noll, M., Vanni, P., Nucl. Instrum. Meth. A552, 138. (2005)
20 Nava, F., Wagner, G., Lanzieri, C., Vanni, P., Vittone, E.,. Nucl. Instrum. Meth. A510, 273, (2003)
21 Castaldini, A., Cavallini, A., Rigutti, L.,. Appl. Phys. Lett. 85, 3780, (2004)
22 Ravnick, M., Jeraj, R.,. Nucl. Sci. Eng. 145, 145, (2003)
23 Zontar, D., Cindro, V., Kramberger, G., Mikuz, M.,. Nucl. Instrum. Meth. A426, 51, (1999)
24 Manfredotti, C., Fizzotti, F., Lo, A., Giudice, , Paolini, C., Vittone, E., Nava, F.,. Appl. Surf. Science 184, 448. (2001)
25 Nava, F., Vittone, E., Vanni, P., Fuochi, P.G., Lanzieri, C.. Nucl. Instr. and Meth. in Phys. Res. A514, 126, (2003)
26 Tapiero, M., Benjelloun, N., Zielinger, J.P., El, S., Hamd, and Noguet, C.. J. Appl. Phys. 64, 8, 4006, (1988)
27 Eywarays, A.O., Smith, S.R., C, W., Mitchel. J. Appl. Phys. 79, 10, 7726, (1996)
28 Kimoto, T., Itoh, A., Matsunami, H., Sridhara, S., Clemen, L. L., Devaty, R. P., Choyke, W. J., Dalibor, T., Peppermüller, C.. Appl. Phys. Lett. 67, 2833, (1995)
29 Lebedev, A.A.,. Fiz. Tekh. Poluprovodn 33,129, (1998) [Semiconductors 33,2,107, (1999)]..
30 Storasta, L., Bergman, J.P., Janzèn, E., Henry, A. and Lu, J.,. J. Appl. Phys. 96, 9, 4909, (2004)
31 Hemmingsson, C.G., Son, N.T., Ellison, A., Zhang, J., and Janzèn., E. Phys. Rev. B 58, 16, R1, (1998)
32 Dalibor, T., Pensl, G., Matsunami, H., Kimoto, T., Choyke, W.J., Schoner, A., and Nordell, N.. Phys. Stat. Sol. (a) 162, 199, (1997)
33 Storasta, L., Carlsson, F.H., Sridhara, S.G., Aberg, D., Bergman, J.P., Hallèn, A. and Janzèn., E. Mat. Science Forum 353–356, 431, (2001)
34 Castaldini, A, Cavallini, A, Rigutti, L. Semicond.Sci.Technol. 21,724, (2006)
35 Martin, D. M., Nielsen, H. Kortegaard, Lévêque, P., Hallén, A., Alfieri, G. Svensson, B. G.. Appl. Phys. Lett. 84, 1704, (2004)
36 Son, N.T., Magnusson, B., Zolnai, Z., Ellison, A., Janzen, E.,. Mat. Science Forum 433–436, 45 (2003).
37 Muller, St.G. Brady, M.F., Brrixius, W.H., Glass, R.C., Hobgood, H. McD, Jenny, J.R., Leonard, R.T., Malta, D.P., Powell, A.R., Tsvetkov, V.F., Allen, S.T., Palmour, J.W., Carter, C.H. Jr, Mat. Science Forum 433–436, 39. (2003)
38 Negoro, Y., Kimoto, T., and Matsunami, H.,. Appl. Phys. Lett. 85, 10, 1716, (2004)
39 Martini, M., Mayer, J.W., Zanio, K., Applied Solid State Science. Edited by. Wolfe, (Academic Press, New York 1972), Vol.3.
40 Li, Z.., “Systematic modelling and comparisons of capacitance and current-based microscopicdefect analysis techniques for measurements of high-resistivity silicon detectors after irradiation”, Nucl. Instr. and Meth. A403, 399, (1998)

Keywords

Related content

Powered by UNSILO

Deep Levels in 4H Silicon Carbide Epilayers Induced by Neutron-Irradiation up to 1016 n/cm2

  • Anna Cavallini (a1), Antonio Castaldini (a2), Filippo Nava (a3), Paolo Errani (a4) and Vladimir Cindro (a5)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.