Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-25T01:48:24.366Z Has data issue: false hasContentIssue false

Deep Level Related Yellow Luminescence in P-Type GaN Grown by MBE on (0001) Sapphire

Published online by Cambridge University Press:  03 September 2012

Giancarlo Salviati
Affiliation:
CNR-MASPEC Institute, Parco Area delle Scienze, 37A, I-43010 Loc. Fontanini-Parma, Italy
Nicola Armani
Affiliation:
CNR-MASPEC Institute, Parco Area delle Scienze, 37A, I-43010 Loc. Fontanini-Parma, Italy
Carlo Zanotti-Fregonara
Affiliation:
CNR-MASPEC Institute, Parco Area delle Scienze, 37A, I-43010 Loc. Fontanini-Parma, Italy
Enos Gombia
Affiliation:
CNR-MASPEC Institute, Parco Area delle Scienze, 37A, I-43010 Loc. Fontanini-Parma, Italy
Martin Albrecht
Affiliation:
Universität Erlangen, Institut für Werkstoffwissenschaften, Mikrocharakterisierung, Cauerstr.6 D-91058 Erlangen, FRG
Horst P. Strunk
Affiliation:
Universität Erlangen, Institut für Werkstoffwissenschaften, Mikrocharakterisierung, Cauerstr.6 D-91058 Erlangen, FRG
Markus Mayer
Affiliation:
Department of Optoelectronics, University of Ulm, Albert Einstein Allee 45, D-89069 Ulm FRG
Markus Kamp
Affiliation:
Department of Optoelectronics, University of Ulm, Albert Einstein Allee 45, D-89069 Ulm FRG
Andrea Gasparotto
Affiliation:
Physics Department, University of Padova, Via Marzolo 8, 35131 Padova, Italy
Get access

Abstract

Yellow luminescence (YL) has been studied in GaN:Mg doped with Mg concentrations ranging from 1019 to 1021 cm−3 by spectral CL (T=5K) and TEM and explained by suggesting that a different mechanism could be responsible for the YL in p-type GaN with respect to that acting in n-type GaN.

Transitions at 2.2, 2.8, 3.27, 3.21, and 3.44 eV were found. In addition to the wurtzite phase, TEM showed a different amount of the cubic phase in the samples. Nano tubes with a density of 3×109 cm−2 were also observed by approaching the layer/substrate interface. Besides this, coherent inclusions were found with a diameter in the nm range and a volume fraction of about 1%.

The 2.8 eV transition was correlated to a deep level at 600 meV below the conduction band (CB) due to MgGa-VN complexes. The 3.27 eV emission was ascribed to a shallow acceptor at about 170-190 meV above the valence band (VB) due to MgGa.

The 2.2 eV yellow band, not present in low doped samples, increased by increasing the Mg concentration. It was ascribed to a transition between a deep donor level at 0.8-1.1 eV below the CB edge due to NGa and the shallow acceptor due to MgGa. This assumption was checked by studying the role of C in Mg compensation. CL spectra from a sample with high C content showed transitions between a C-related 200 meV shallow donor and a deep donor level at about 0.9- 1.1 eV below the CB due to a NGa-VN complex. In our hypothesis this should induce a decrease of the integrated intensity in both the 2.2 and 2.8 eV bands, as actually shown by CL investigations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ogino, T. and Aoki, M., Jpn J. Appl. Phys. 19, 23952405 (1980)Google Scholar
2. Hofmann, D.M., Kovalev, D., Steude, G., Meyer, B.K., Hoffmann, A., Eckey, L., Heitz, R., Detchprom, T., Amano, H. and Akasaki, I., Phys. Rev. B52 1670216706 (1995)Google Scholar
3. Neugebauer, J. and Walle, C.G.Van de, Appl. Phys. Lett. 69, 503505 (1996)Google Scholar
4. Walle, C.G. Van de, Stampfl, C., Neugebauer, J., J. Cryst. Growth 189–190, 505510 (1998)Google Scholar
5. Kim, W., Salvador, A., Botchkarev, A.E., Aktas, O., Mohammad, S.N. and Morkoç, H., Appl. Phys. Lett. 69, 559561 (1996)Google Scholar
6. Kaufmann, U., Kunzer, M., Maier, M., Obloh, H., Ramakrishnan, A., Santic, B. and Schlotter, P., Appl. Phys. Lett., 72, 13261328 (1998)Google Scholar
7. Nakamura, S., Mukai, T., Senoh, M. and Iwasa, N., Jpn. J. Appl. Phys. 31, L139- 141 (1992)Google Scholar
8. Sanchez, F.J., Calle, F., Basak, D., Tijero, J.M.G., Sanchez-Garcia, M.A., Monroy, E., Calleja, E., Muñoz, E., Beaumont, B., Gibart, P., Serrano, J.J. and Blanco, J.M., MRS Internet J. Nitride Semicond. Res. 2, 28 (1997)Google Scholar
9. Kamp, M., Mayer, M., Pelzmann, A. and Ebeling, K.J., MRS Internet J. Nitride Semicond. Res. 2, 26 (1997)Google Scholar
10. Leroux, M., Grandjean, N., Beaumont, B., Nataf, G., Semond, F., Massies, J. and Gibart, P., J. Appl. Phys. 86, 37213728 (1999)Google Scholar
11. Lim, P.H., Schineller, B., Schon, O., Heime, K. and Heuken, M., J. Cryst. Growth 205, 110 (1999)Google Scholar
12. Pantelides, Reboredo e Phys.Rev. Lett. 82, 1887 (1999)Google Scholar
13. Chang, Lee e, Semic. Sci. and Technol. 14, 138 (1999)Google Scholar
14. Oh, E., Park, H.S. and Park, Y.J., Appl. Phys. Lett. 72, 7072 (1998)Google Scholar
15. Pavesi, L. and Guzzi, M., J. Appl. Phys. 75, 47794842 (1994)Google Scholar
16. Dean, P.J., Prog. Cryst. Growth, Charact. 1982, vol. 5 pagg. 89174 Google Scholar
17. Bungaro, C., Rapcewiz, K. and Bernholc, J., Phys. Rev. B59, 97719774 (1999)Google Scholar
18. Tansley, T.L. and Egan, R.J., Physica B 185, 190193 (1993)Google Scholar
19. Suski, T., Perlin, P., Teisseyre, H., Leszczynski, M., Grzegory, I., Jun, J. and Bockowski, M., Appl. Phys. Lett. 67, 21882190 (1995)Google Scholar
20. Neugebauer, J. and Walle, C.G. Van de, Phys. Rev. B50 Rapid Comm., 80678070 (1994)Google Scholar
21. Reuter, E.E., Zhang, R., Kuech, T.F. and Bishop, S.G., MRS Internet J. Nitride Semicond. Res. 4S1 G3.67 (1999)Google Scholar
22. Boguslawski, P., Briggs, E.L. and Bernholc, J., Appl. Phys. Lett. 69, 233235 (1996)D.J.Google Scholar
23. Chadi, D.J., Appl. Phys. Lett. 71, 29702971 (1997)Google Scholar