Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-25T00:45:55.958Z Has data issue: false hasContentIssue false

Deep Level Defects in Mg-Doped GaN

Published online by Cambridge University Press:  15 February 2011

Gyu-Chul Yi
Affiliation:
Department of Materials Science and Engineering and Materials Research Center, Northwestern University, Evanston, Illinois 60208
Bruce W. Wessels
Affiliation:
Department of Materials Science and Engineering and Materials Research Center, Northwestern University, Evanston, Illinois 60208
Get access

Abstract

Deep level defects in Mg compensated GaN grown by metal-organic vapor phase epitaxy were investigated using photocapacitance spectroscopy measurements on Schottky barrier diodes. Addition of magnesium resulted in the formation of a series of deep centers with optical threshold energies of 1.0, 1.2, 1.8, and 3.1 eV. Upon annealing the epitaxial GCN in nitrogen at 850°C the ind-gap levels disappeared and only the trapping level at 3.1 eV remained. The mid-gap levels are ascribed to Mg dopant complexes which may in part be responsible for low doping efficiency of Mg in the as-grown, doped GaN. The deep level at 3.1 eV commonly observed from all Mgdoped GaN most likely involves the Mg acceptor. The photo-excited state of the 3.1 eV level had relaxation times of the order of 103 sec at 295 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Amano, H., Kito, M., Hirarnatsu, K., and Akasaki, I., Jpn. J. Appl. Phys. 28, L2112 (1989).Google Scholar
2. Nakamura, S., Isawa, N., Senoh, M., and Mukai, T., Jpn. J. Appl. Phys. 31, 1258 (1992).Google Scholar
3. Van Vechten, J. A., Zook, J. D., Hornming, R. D., and Goldenberg, B., Jpn. J. Appl. Phys. 31, L139 (1989).Google Scholar
4. Brandt, M. S., Johnson, N. M., Molnar, R. J., Smigh, G., and Moustakas, T. D., Appl. Phys. Lett. 64, 2264 (1994).Google Scholar
5. Neugebauer, J. and Van de Walle, C. G., Phys. Rev. Lett. 75, 4452 (1995).Google Scholar
6. Götz, W., Johnson, N. M., Walker, J., Bour, D. P., and Street, R. A., Appl. Phys. Lett. 68, 667 (1996).Google Scholar
7. Qiu, C. H., Hoggatt, C., Melton, W., Leksono, M. W., and Pankove, J. I., Appl. Phys. Lett. 66, 2712 (1995).Google Scholar
8. Götz, W., Johnson, N. M., Street, R. A., Amano, H., and Akasaki, I., Appl. Phys. Lett. 66, 1340 (1995).Google Scholar
9. Yi, G.-C. and Wessels, B. W., submitted.Google Scholar
10. Yi, G.-C. and Wessels, B. W., in Abstracts of the 37th TMS Electronic Materials Conference, Charlottesville VA, June 21–23, 1995.Google Scholar
11. Yi, G.-C. and Wessels, B. W., Mater. Sci. Forum 196–201, 49 (1995).Google Scholar
12. Bawolek, E. J. and Wessels, B. W., Thin Solid Films 102, 251 (1983).Google Scholar
13. Grimmeiss, H. G., Ann. Rev. Mater. Sci. 7, 341 (1977).Google Scholar
14. Lucovsky, G., Solid State Commun. 3, 299 (1965).Google Scholar
15. Tanaka, T., Watanabe, A., Amano, H., Kobayashi, Y., Akasaki, I., Yamazaki, S., and Koike, M., Appl. Phys. Lett. 65 593 (1994).Google Scholar