Skip to main content Accessibility help
×
Home

Decarburization of Hot-Rolled Non-Oriented Electrical Steels

  • Emmanuel J. Gutiérrez (a1) and Armando Salinas (a1)

Abstract

The high temperature decarburization-oxidation behavior of hot rolled, non-oriented electrical steel strips is investigated during air-annealing treatments. Annealing temperature and time are varied from 700 – 1050 °C and 10 to 150 min, respectively. The experimental results show that uniform external oxidation affects strongly the rate at which carbon can be removed from this material. The thickness of the oxide layer formed after 150 minutes of annealing increases linearly with increasing temperature in the range 828 and 920 °C. The effect of temperature on the thickness of the oxide scale at temperatures outside this range is significantly smaller. These results indicate that the rate of oxidation in this material is strongly influenced by the microstructure of the steel during annealing. Decarburization rates are very slow during annealing at T ≤ 750 °C where the oxide layer is thin and porous. In contrast, fast and intense decarburization of the strips is observed as a result of annealing at temperatures between 800 and 850 °C. Finally, decarburization at T ≥ 875 °C becomes slower as the temperature is increased until at T ≥ 950 °C this process is practically inhibited. Measurements of C content as a function of time and temperature show that the observed decarburization kinetics follows Wagner’s model at 800 and 850 °C. However, at higher annealing temperatures decarburization is slower than that predicted by the model. This behavior is related to the increment of the oxide scale thickness and a transition from cracked to crack-free oxide structure which makes C diffusion through the oxide film very difficult.

Copyright

References

Hide All
1. Gautam, J., Control of surface graded transformation textures in steels for magnetic flux carrying applications, PhD Thesis, Delft University of Technology, 2011.
2. Kestens, L., Jonas, J. J., Van Houtte, P. and Aernoudt, E., Orientation selective recrystallization of nonoriented electrical steels, Metall. Mater. Trans., 27, 23472358 (1996).
3. Gutiérrez, E. J.., Salinas, A., Effect of annealing prior to cold rolling on magnetic and mechanical properties of low carbon non-oriented electrical steels, J. Magn. Magn. Mater, 323, 25242530 (2011).
4. Marder, A. R, Perpetua, S.M, Kowalik, J.A. and Stephenson, E.T., The effect of carbon content on the kinetics of decarburization in Fe-C alloys, Metall. Trans., 16A, 11601163 (1985).
5. Chen, R. Y, Yuen, W. Y. D., Review of the high-temperature oxidation of iron and carbon steels in air or oxygen, Oxidation of metals, 59, 433468 (2003).
6. Weihua, S., A study on the characteristics of oxide scale in hot rolling of steel, PhD thesis, University of Wollongong, 2005.

Keywords

Decarburization of Hot-Rolled Non-Oriented Electrical Steels

  • Emmanuel J. Gutiérrez (a1) and Armando Salinas (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed