Skip to main content Accessibility help
×
Home

Damage Resistance of In Situ Reinforced Silicon Nitride

  • Chien-Wei Li (a1), Charles J. Gasdaska (a1), Jeffrey Goldacker (a1) and Siu-Ching Lui (a1)

Abstract

The room temperature fracture behavior for in situ reinforced (ISR) silicon nitride is correlated to its microstructure and R-curve behavior. The relation of strength to fracture origin suggests that stable growth of the intrinsic flaw precedes catastrophic fracture. Grainbridging that generates a rising bridging stress behind the crack-tip has been proposed as the cause for stable crack growth, which in turn reduces the strength dependency on initial flaw size. As a result of strong bridging by the acicular β-Si3N4 grains, ISR Si3N4 is characterized for high Weibull modulus. At elevated temperatures, the material's tensile creep rupture behavior follows the Monkman-Grant type plot. A tensile creep rate of -10−9s−1 at 1260°C/250 MPa, 1300°C/180 MPa, and 1350°C/90 MPa has been recorded. This relatively strong creep resistance is related to the sliding-resistance of the acicular grains and the properties of the amorphous film between the grains in ISR Si3N4.

Copyright

References

Hide All
1. Lange, F. F., J. Am. Ceram. Soc. 62 (9-10), 428 (1979).
2. Li, C.-W. and Yamanis, J., Ceram. Eng. Sci. Proc. 10 (7-8), 632 (1989).
3. Li, C.-W., Lee, D.-J., and Lui, S.-C., J. Am. Ceram. Soc. 75 (7), 1777 (1992).
4. Whalen, P. J., Gasdaska, C. J., and Silvers, R. D., Ceram. Eng. Sci. Proc. 11 (7-8), 633 (1990).
5. Chantikul, P., Anstis, G. R., Lawn, B. R., and Marshall, D. B., J. Am. Ceram. Soc. 64 (9), 539 (1981).
6. Chantikul, P., Bennison, S. J., and Lawn, B. R., J. Am. Ceram. Soc. 73 (8), 2419 (1990).
7. Petrovic, J. J. and Mendiratta, M. G., in Fracture Mechanics Applied to Brittle Materials, ASTM STP 678, edited by Freiman, S. W. (American Society for Testing and Materials, (1979), p. 83
8. Sung, J. and Nicholson, P. S., J. Am. Ceram. Soc. 71 (9), 788 (1988).
9. Seshadri, S. G. and Srinivasan, M., J. Am. Ceram. Soc. 64 (4), C68 (1981).
10. Ikeda, K. and Igaki, H., J. Am. Ceram. Soc. 70 (2) C29 (1987).
11. Kirchner, H. P., Gruver, R. M., Sotter, W. A., Mater. Sci. Eng. 22 (2), 147 (1976).
12. Usami, S., Kimoto, H., Takahashi, I., and Shida, S., Eng. Fract. Mech. 26 (4), 745 (1986).
13. Hoshide, T., Furuya, H., Nagase, Y., and Yamada, T., Int. J. Fract. 26 (4), 229 (1984).
14. Singh, J. P., Virkar, A. V., Shetty, D. K., and Gordon, R. S., J. Am. Ceram. Soc. 62 (3-4), 179 (1979).
15. Rice, R. W., Freiman, S. W., and Mecholsky, J. J., J. Am. Ceram. Soc. 63 (3-4), 129 (1980).
16. Bennison, S. J. and Lawn, B. R., J. Mater. Sci. 24 (9), 3169 (1989).
17. Shatty, D. K. and Wang, J. S., J. Am. Ceram. Soc. 72 (7), 1158 (1989).
18. Virkar, A. V., Shetty, D. K., and Evans, A. G., J Am. Ceram. Soc. 64 (3-4), C56 (1981).
19. Monkman, F.C. and Grant, N.J., in Deformation and Fracture at Elevated Temperatures, eds., Grant, N.J. and Mullendore, A.W., The M.I.T. Press Cambridge, MA (1965).
20. Wiederhorn, S.M., Hockey, B.J., Cranmer, D.C., Roberts, D.E. and Krause, R., in Preprints of the Ann. Auto. Technology Dev. Contractors' Coordination Meeting, U.S. Dept. of Energy, 1991.
21. Raj, R., J. Am. Ceram. Soc. 65 (3), C46 (1982).
22. Beerd, W., Phil. Trans. R. Soc. Lond. A. 288, 177 (1978).
23. Li, J.H. and Uhlmann, D.R., J. Non Crstall. Solids, 3, 127 (1970).
24. Simmons, J.H., Mohr, R.K. and Montrose, C.J., J. Appl. Phys. 53 (6), 4075 (1982).

Damage Resistance of In Situ Reinforced Silicon Nitride

  • Chien-Wei Li (a1), Charles J. Gasdaska (a1), Jeffrey Goldacker (a1) and Siu-Ching Lui (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed