Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-25T02:24:26.534Z Has data issue: false hasContentIssue false

Damage in High Energy Light Ions Irradiated Silicon Carbide

Published online by Cambridge University Press:  10 February 2011

P. Leveque
Affiliation:
LMP UMR 6630 CNRS, Université de Poitiers, Bd 3-Té1éport 2, F-86960 Futuroscope Cedex
S. Godey
Affiliation:
CNRS-CERI, 3A rue de a Férollerie, 45071 Orléans Cedex, France
P.O. Renault
Affiliation:
LMP UMR 6630 CNRS, Université de Poitiers, Bd 3-Té1éport 2, F-86960 Futuroscope Cedex
E. Ntsoenzok
Affiliation:
CNRS-CERI, 3A rue de a Férollerie, 45071 Orléans Cedex, France
J.F. Barbot
Affiliation:
LMP UMR 6630 CNRS, Université de Poitiers, Bd 3-Té1éport 2, F-86960 Futuroscope Cedex
Get access

Abstract

Commercial n-type 4H-SiC wafers were implanted with doses of MeV alpha particles, high enough to cause majority carrier modification. Analysis of infrared reflectivity spectra shows that the implanted crystals can be divided into three layers: a surface layer of about 30 nm followed by a compensation layer where the energy transfer of the incident particles is low and an overdoping layer in the region of maximum defect production, i.e. near the theoretical mean range of ions Rp

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wooten, F., in Optical properties of solids (Academic, New York, 1972), p 52.Google Scholar
2. Vasicek, A., in Optics of thin films (North-Holland, Amsterdam, 1960), p 90.Google Scholar
3. Gotz, W. et al. , J. Appl. Phys. 72, 3332 (1993).Google Scholar
4. Neudeck, P. G., Phil.Neudeck@lerc.nasa.gov.Google Scholar
5. Schaffer, W. J., Kang, H. S., Neglay, G. H., Palmour, J. W., Inst. Phys. Conf. Ser. (U. K.) 137, 51–4 (1994).Google Scholar