Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-29T13:38:34.327Z Has data issue: false hasContentIssue false

Current Understanding and Modeling of B Diffusion and Activation Anomalies in Preamorphized Ultra-Shallow Junctions

Published online by Cambridge University Press:  17 March 2011

B. Colombeau
Affiliation:
Advanced Technology Institute, University of Surrey, Guildford GU2 7XH, UK
A.J. Smith
Affiliation:
Advanced Technology Institute, University of Surrey, Guildford GU2 7XH, UK
N.E.B. Cowern
Affiliation:
Advanced Technology Institute, University of Surrey, Guildford GU2 7XH, UK
B.J. Pawlak
Affiliation:
Philips Research Leuven, Kapeldreef 75, B-3001 Leuven, Belgium
F. Cristiano
Affiliation:
LAAS/CNRS, 7 av. du col. Roche, 31077 Toulouse, France
R. Duffy
Affiliation:
Philips Research Leuven, Kapeldreef 75, B-3001 Leuven, Belgium
A. Claverie
Affiliation:
aCEMES/CNRS, 29 rue J. Marvig, 31055Toulouse, France
C.J. Ortiz
Affiliation:
Fraunhofer IISB, Schottkystrasse 10, 91058 Erlangen, Germany
P. Pichler
Affiliation:
Fraunhofer IISB, Schottkystrasse 10, 91058 Erlangen, Germany
E. Lampin
Affiliation:
IEMN/ISEN, UMR CNRS 8520, Villeneuve d'Ascq, France
C. Zechner
Affiliation:
ISE Integrated System Engineering AG, Affolternstr. 52 CH-8050 Zürich, Switzerland
Get access

Abstract

The formation of ultra-shallow junctions (USJs) for future integrated circuit technologies requires preamorphization and high dose boron doping to achieve high activation levels and abrupt profiles. To achieve the challenging targets set out in the semiconductor roadmap, it is crucial to reach a much better understanding of the basic physical processes taking place during USJ processing. In this paper we review current understanding of dopant-defect interactions during thermal processing of device structures – interactions which are at the heart of the dopant diffusion and activation anomalies seen in USJs. First, we recall the formation and thermal evolution of End of Range (EOR) defects upon annealing of preamorphized implants (PAI). It is shown that various types of extended defect can be formed: clusters, {113} defects and dislocation loops. During annealing, these defects exchange Si interstitial atoms and evolve following an Ostwald ripening mechanism. We review progress in developing models based on these concepts, which can accurately predict EOR defect evolution and interstitial transport between the defect layer and the surface. Based on this physically based defect modelling approach, combined with fully coupled multi-stream modelling of dopant diffusion, one can perform highly predictive simulations of boron diffusion and de/re-activation in Ge-PAI boron USJs. Agreement between simulations and experimental data is found over a wide range of experimental conditions, clearly indicating that the driving mechanism that degrades boron junction depth and activation is the dissolution of the interstitial defect band. Finally, we briefly outline some promising methods, such as co-implants and/or vacancy engineering, for further down-scaling of source-drain resistance and junction depth.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. The International Technology Roadmap for Semiconductors, 2001.Google Scholar
2. Landi, E., Armigliato, A., Solmi, S., Koghler, R., and Wieser, E., Appl. Phys. A :Mater. Sci. Proc. A47, 359.Google Scholar
3. Lindsay, R., Pawlak, B.J., Stolk, P., and Maex, K., Mat. Res. Soc. Symp. Proc. Vol 717, C2.1 (2002).Google Scholar
4. Lindsay, R., Pawlak, B.J., Kittl, J.A., Henson, K., Giangrandi, S., Duffy, R., Surdeanu, R., Vandervorst, W., Pages, X., Jeugd, K. van der, Stolk, P., and Maex, K., Seventh International Workshop on: Fabrication, Characterization, and Modeling of Ultra-Shallow Doping Profiles in Semiconductors, Santa Cruz, 65 (2003).Google Scholar
5. Claverie, A., Colombeau, B., Assayag, G. Ben, Bonafos, C., Cristiano, F., Omri, M. and Mauduit, B. de, MSSP, 610, (2000).Google Scholar
6. Lampin, E., Senez, V. and Claverie, A., J. Appl. Phys., 85, 8137 (1999).Google Scholar
7. Laânab, L., Bergaud, C., Faye, MM., Fauré, J., Martinez, A. and Claverie, A., Mat. Res. Soc. Symp. Proc., 279, 381 (1993).Google Scholar
8. Claverie, A., Bonafos, C., Alquier, D. and Martinez, A., Solid State Phenomena, V47–48, 195 (1996).Google Scholar
9. Claverie, A., Colombeau, B., Mauduit, B. de, Bonafos, C., Hebras, X., Assayag, G. Ben and Cristiano, F., Appl. Phys. A., 76, 1025 (2003).Google Scholar
10. Bonafos, C., Mathiot, D. and Claverie, A., J. Appl. Phys., 83, 3008 (1998).Google Scholar
11. Cowern, N.E.B. et al. , Phys. Rev. Lett. 82, 4460 (1999) and Mat. Sci. Semicond. Process. 2, 369 (1999)Google Scholar
12. Eaglesham, D.J., Stolk, P.A., Gossmann, H.J. and Poate, J.M., Appl. Phys. Lett., 65, 2305 (1994).Google Scholar
13. Cowern, N.E.B., Alquier, D., Omri, M., Claverie, A., and Nejim, A., Nucl. Instrum. Meth. Phys. Res. B 148, 257 (1999).Google Scholar
14. Colombeau, B., PhD Thesis, University of Toulouse (2001).Google Scholar
15. Cowern, N.E.B., Jansen, K.T.F., Walle, G.F.A. van de and Gravesteijn, D.J., Phys. Rev. Lett. 65, 2434 (1990), Phys. Rev. Lett. 67, 212 (1991).Google Scholar
16. Caturla, M.J., Johnson, M.D. and Rubia, T. Diaz de la, Appl. Phys. Lett., 72, 2736 (1998).Google Scholar
17. Lamrani, Y., Cristiano, F., Colombeau, B., Scheid, E., Calvo, P., Schäfer, H. and Claverie, A., Nucl. Inst Meth. B., 216, 95 (2004).Google Scholar
18. Jain, S.C., Schoenmaker, W., Lindsay, R., Stolk, P., Decoutere, S., Willander, M. and Maes, H. E., J. Appl. Phys, 91, 8919 (2002).Google Scholar
19. Chao, H.S., Crowder, S.W., Griffin, P.B. and Plummer, J.D., J. Appl. Phys., 79 (1996) 2352.Google Scholar
20. Uematsu, M., Mat. Res. Soc. Symp. Proc. 717, C5.1 (2002)Google Scholar
21. Lampin, E., Cristiano, F., Lamrani, Y., Claverie, A., Colombeau, B. and Cowern, N.E.B., J. Appl. Phys., 94, 7520 (2003).Google Scholar
22. Duffy, R., Venezia, V.C., Heringa, A., Hüsken, T.W.T., Hopstaken, M.J.P., Cowern, N.E.B., Griffin, P.B., and Wang, C.C., Appl. Phys. Lett., 82, 3647 (2003).Google Scholar
23. Pawlak, B.J. et al. , Seventh International Workshop on: Fabrication, Characterization, and Modeling of Ultra- Shallow Doping Profiles in Semiconductors, Santa Cruz, 227 (2003).Google Scholar
24. Pawlak, B.J., Surdeanu, R., Colombeau, B., Smith, A.J., Cowern, N.E.B., Lindsay, R., Vandervost, W., Brijs, B., Richard, O. and Cristiano, F., Appl. Phys. Lett., 84, 2005 (2004).Google Scholar
25. Solmi, S., Landi, E. and Baruffaldi, F., J. Appl. Phys. 68, 3250 (1990).Google Scholar
26. Landi, E., Armigliato, A., Solmi, S., Koghler, R. and Wieser, E., Appl. Phys. A.: Mater. Sci. Proc. A47, 359 (1998).Google Scholar
27. Aboy, M., Pelaz, L., Marques, L.A., Barbolla, J., Mokhberi, A., Takamura, Y., Griffin, P.B., and Plummer, J., Appl. Phys. Lett. 83, 4166 (2003).Google Scholar
28. Mokhberi, A. et al. , IEDM Proceedings (2002).Google Scholar
29. Mattoni, A. and Colombo, L., Phys. Rev. B., 69. 045204 (2004).Google Scholar
30. Colombeau, B., Cowern, N.E.B., Smith, A.J. and Pawlak, B.J., to be submitted to J. Appl. Phys.Google Scholar
31. Smith, A.J., Colombeau, B., Cowern, N.E.B. and Sealy, B., private communication.Google Scholar
32. Duffy, R., private communication.Google Scholar
33. Nejim, A. and Sealy, B., Semicond. Sci. Technol. 18, 839 (2003).Google Scholar
34. Shao, L., Liu, J., Chen, Q. Y., Chu, W.K., Mat. Sc. Eng. R42, 65 (2003).Google Scholar
35. Kalyanraman, R., Venezia, V.C., Pelaz, L., Haynes, T.E., Gossmann, HJ and Rafferty, C.S., Appl. Phys. Lett., 82, 215 (2003).Google Scholar
36. Smith, A.J., Colombeau, B., Cowern, N.E.B., Collart, E., Gwilliam, R. and Sealy, B.J., to be submitted to Appl. Phys. Lett.Google Scholar