Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T04:38:29.040Z Has data issue: false hasContentIssue false

Current Transport in CuInS2 Solar Cells Depending on Absorber Preparation

Published online by Cambridge University Press:  21 March 2011

Joachim Reiβ
Affiliation:
Hahn-Meitner-Institut Berlin GmbH, Glienicker Strasse 100, D-14109 Berlin, Germany
Jonas Malmström
Affiliation:
Ångström Solar Center, Uppsala University, P.O. Box 534, SE-75121 Uppsala, Sweden
Axel Werner
Affiliation:
Hahn-Meitner-Institut Berlin GmbH, Glienicker Strasse 100, D-14109 Berlin, Germany
Reiner Klenk
Affiliation:
Hahn-Meitner-Institut Berlin GmbH, Glienicker Strasse 100, D-14109 Berlin, Germany
Martha Ch. Lux-Steiner
Affiliation:
Hahn-Meitner-Institut Berlin GmbH, Glienicker Strasse 100, D-14109 Berlin, Germany
Get access

Abstract

According to our model for the current transport in CuInS2/CdS/ZnO solar cells presented previously, the dominant recombination under illumination occurs at the CuInS2/CdS interface. In this contribution we expand this model for cells where the absorber has been prepared in different sequential processes by using results from jV curve measurements performed at varied temperature and illumination. We find that in contrast to CuInSe2 and CuGaSe2 solar cells from the Ångström Solar Center the CuInS2 cells exhibit a qualitative change in the dominant recombination mechanism between the dark and under illumination. The dominant recombination mechanism under illumination appears to be affected by absorber preparation parameters.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Siemer, K., Klaer, J., Luck, I., Bruns, J., Klenk, R. and Bräunig, D., Solar Energy Materials and Solar Cells 67, 159166 (2001).Google Scholar
2 Blieske, U., Dieterle, V., Hengel, I., Kaufmann, C., Klenk, R. and Lux-Steiner, M. C., in Proceedings of the 14th European Photovoltaic Solar Energy Conference, Barcelona, Spain, 1997, pp. 21352138.Google Scholar
3 Hengel, I., Neisser, A., Klenk, R. and Lux-Steiner, M. C., Thin Solid Films 361–362, 458462 (2000).Google Scholar
4 Klenk, R., Blieske, U., Dieterle, V., Ellmer, K., Fiechter, S., Hengel, I., Jäger-Waldau, A., Kampschulte, T., Kaufmann, C., Klaer, J., Lux-Steiner, M. C. Hariskos, D., Ruckh, M. and Schock, H. W., Sol. Energ. Mat. Sol. C. 49, 349356 (1997).Google Scholar
5 Klaer, J., Bruns, J., Henninger, R., Siemer, K., Klenk, R., Ellmer, K. and Bräunig, D., Semicond. Sci. Technol. 13, 14561458 (1998).Google Scholar
6 Riedle, T., Matthes, T., Neisser, A., Klenk, R., Hinrichs, C., Esser, N., M. C. Lux-Steiner and Richter, W., in Proceedings of the 16th European Photovoltaic Solar Energy Conference, Glasgow, Scottland, 2000.Google Scholar
7 Werner, A., Luck, I., Bruns, J., Klaer, J., Siemer, K. and Bräunig, D., Thin Solid Films 361–362, 8892 (2000).Google Scholar
8 Kessler, J., Bodegard, M., Hedström, J. and Stolt, L., Solar Energy Materials and Solar Cells 67, 6776 (2001).Google Scholar
9 Rau, U. and Schock, H. W., Applied Physics. A. 69, 131147 (1999).Google Scholar
10 Nadenau, V., Rau, U., Jasenek, A. and Schock, H. W., Journal of Applied Physics 87, 584593 (2000).Google Scholar
11 Padovani, F. A. and Stratton, R., Solid State Electronics 9, 695707 (1966).Google Scholar
12 Rau, U., Jasenek, A., Schock, H. W., Engelhardt, F. and Meyer, T., Thin Solid Films, 298302 (2000).Google Scholar
13 Klenk, R., Thin Solid Films 387, 135140 (2001).Google Scholar
14 Mönch, W., J. Vac. Sci. Technol. B 17, 1867 (1999).Google Scholar