Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-25T03:55:04.099Z Has data issue: false hasContentIssue false

Current State and Future Challenge in HgCdTe MBE Technology

Published online by Cambridge University Press:  22 February 2011

Owen K. Wu*
Affiliation:
Hughes Research Laboratories 3011 Malibu Canyon Road, Malibu, CA 90265
Get access

Abstract

Significant progress has been made in HgCdTe MBE technology over the last two years. Device quality materials have been grown with the alloy compositions required for short-wavelength infrared (SWIR), 1-3 micron to LWIR (long-wavelength infrared), 8-12 micron applications. Indeed, the observation of low defect density (EPD<2×105/cm2), long minority carrier lifetime and efficient IR photoluminescence attests to the device quality of HgCdTe epilayers grown by MBE. In addition, the breakthroughs to achieve In (N-type) and As (P-type) doping in situ have provided greater flexibilities for fabricating advanced heterojunction devices. High performance IR imaging arrays have been fabricated and IR images were obtained. Also, dual-band detectors and injection infrared diode lasers which have been demonstrated recently are considered. Finally, additional developments and the future challenges in HgCdTe MBE technology are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tung, T., DeArmond, L. V., Herald, R. F., Herning, P. E., Kalisher, M. H., Olson, D. A., Risser, R. F., Stevens, A. P., and Tighe, S. J., SPIE Vol. 1735 Infrared Detectors: State of the Art, 109 (1992)Google Scholar
2. Balcerak, R., Semicond. Sci. Technol. 6, C1–C5 (1991)Google Scholar
3. Wu, O.K., Mat. Res. Soc. Symb. Proc. Vol. 302, 423 (1993)Google Scholar
4. Arias, J., Zandian, M., Pasko, J. G., Shin, S. H., Bubulac, L. O., Dewames, R. E., and Tennant, W. E. J. Appl. Phys. 69(4), 2143 (1991)Google Scholar
5. Wu, O.K., Jensen, J.E., Kamath, G. Sanjiv, Chapman, G. E., Venzor, G. M., Cockrum, C. A., Johnson, S. M. and Wilson, J. A., to be published.Google Scholar
6. Faurie, J. P. and Million, A., J. Cryst. Growth 54, 582 (1982)Google Scholar
7. He, L., Becker, C. R., Bicknell-Tassius, R. N., Scholl, S., Landwehr, G., Semi. Sci. and Technol. vol.8, S216 (1993)Google Scholar
8. Arias, J. M., Pasko, J. G., Zandian, M., Shin, S. H., Williams, G. M., Bubulac, L. O., Dewames, R. E., and Tennant, W. E., Appl. Phys. Lett. 62(9) 976 (1993)Google Scholar
9. Kanno, T., Saga, M., Kawahara, A., Oikawa, R., Tomioka, Y., Ajisawa, A., Tomioka, Y., Murashima, S., Shima, T., and Yasuda, N., SPIE 1993 Int. Symposium on Optics, Imagimg, and Instrumentation, San Diego, CA (11-16 Jul, 1993)Google Scholar
10. Sivananthan, S., Chu, X., Reno, J., and Faurie, J. P., J. Appl. Phys. 60, 1359 (1986)Google Scholar
11. Harris, K. A., Meyers, T. H., Yanka, R. W., and Mohnkern, L. M., Green, R. W. and Otsuka, N., J. Vac. Sci. Technol. A8(2) 1013 (1990)Google Scholar
12. Wu, O.K., SPIE Vol. 2021, 79 (1993)Google Scholar
13. Wu, O.K., Jamba, Doug N. and Kamath, G. Sanjiv, J. Crystal Growth, 127, 365 (1993)Google Scholar
14. Zandian, M., Arias, J. M., Zucca, R., Gil, R. V., and Shin, S. H., Appl. Phys. Lett. 59(9), 1022 (1991)Google Scholar
15. Arias, J. M., Zandian, M., Zucca, R. and Singh, J., Semi. Sci. and Technol. Vol.8, S255 (1993)Google Scholar
16. Million, A., Colin, T., Ferret, P., Zanatta, J. P., Bouchut, P., Destefanis, G. L. and Bablet, J., J. Crystal Growth 127, 291 (1993)Google Scholar
17. Le, H. Q. et. al. to be published at Appl. Phys. Lett.Google Scholar
18. Casselman, T. N., Walsh, D. T., Myrosznyk, J. M., Kosai, K., Radford, W. A., Schulte, E. F. and Wu, O.K., 1990 U.S. Workshop on the Physics and Chemistry of Mercury Cadmium Telluride and Novel IR Detector MaterialsGoogle Scholar
19. Blazejewski, E. R., Arias, J. M., Williams, G. M., Zandian, M., Pasko, J. G. and McLevige, W. J. Vac. Sci. Technol. B, Vol. 10, No. 4, 1649 (1992)Google Scholar
20. Arias, J. M., Zandian, M., Zucca, R., and DeWames, R. E., Appl. Phys. Lett. Vol.58, No.24, 2806 (1991)Google Scholar
21. Qiu, Y., He, L., Li, J., Yuan, S., Becker, C. R., Landwehr, G., Appl. Phys. Lett. Vol.62, No.10, 1134 (1993)Google Scholar
22. Yuan, S., He, L., Yu, J., Yu, M., Qiao, Y. and Zhu, J., Appl. Phys. Lett. 58, 914 (1991)Google Scholar
23. Sulhoff, J., Zyskind, J., Burrus, C., Feldman, R. and Austin, R. App. Phys. Lett. 56, 388 (1990)Google Scholar
24. Dreifus, D., Kolbas, R., Han, J., Cook, J. Jr and Schetzina, J., J. Vac. Sci. Technol. A8, 1221 (1990)Google Scholar
25. deLyon, T. J., Johnson, S. M., Cockrum, C. A., Hamilton, W. J., and Wu, O.K., SPIE Vol.2021, 114 (1993)Google Scholar