Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T13:20:22.463Z Has data issue: false hasContentIssue false

Cu(In, Ga)(Se, S)2 Absorbers Formed by Rapid Thermal Processing of Elemental Precursors: Analysis of Thin Film Formation and Implementation of A Large Area Industrial Process

Published online by Cambridge University Press:  01 February 2011

Joerg Palm
Affiliation:
Shell Solar GmbH, RS/T-CIS, Otto Hahn Ring 6, D-81739 Munich, Germany
V. Probst
Affiliation:
Shell Solar GmbH, RS/T-CIS, Otto Hahn Ring 6, D-81739 Munich, Germany
W. Stetter
Affiliation:
Shell Solar GmbH, RS/T-CIS, Otto Hahn Ring 6, D-81739 Munich, Germany
R. Toelle
Affiliation:
Shell Solar GmbH, RS/T-CIS, Otto Hahn Ring 6, D-81739 Munich, Germany
Get access

Abstract

Large area Cu(In, Ga)(Se, S)2 thin films (CIGSSe) for solar modules are processed by rapid thermal annealing of stacked elemental layers. A pilot line for 60×90 cm2 absorbers and 30×30cm2 modules is now up and running. Modules with efficiencies at 12% are fabricated with excellent structural and electrical uniformity. For the optimization of electrical performance the selenization and sulfurization process is analyzed by x-ray fluorescence (XRFA), x-ray photo-electron spectroscopy (XPS), secondary ion mass spectroscopy (SIMS) and current voltage (I-V) measurements. Sequentially processed CIGSSe films show characteristic depth distribution profiles of gallium and sulfur. Based upon our previously published model obtained by In-Situ XRD analysis the Ga profile can be explained by the strongly inhibited formation of binary gallium-selenides. The sulfur incorporation is investigated by comparing XRFA data and SIMS profiles of samples from different sulfurization recipes. A characteristic dependence of S on the Cu/(In+Ga) ratio is observed. Two different mechanisms for sulfur incorporation are proposed. It will be shown that the accumulation of sulfur towards the back is predominantly due to the incorporation into an intermediate molybdenum sulfo-selenide layer. Device characterization shows that the Ga and S profiles lead to a favorable double band gap grading structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Green, M. A., Emery, K., King, D. L., Igari, S., Warta, W., Solar Cell Efficiency Tables (Version 20); Progr. Photovolt.: Res. Appl. 10, 355 (2002).Google Scholar
2. Probst, V., Stetter, W., Riedl, W., Vogt, H., Wendl, M., Calwer, H., Zweigart, S., Ufert, K.-D., Freienstein, B., Cerva, H., Karg, F., Thin Solid Films 387, 262267 (2001).Google Scholar
3. Probst, V., Stetter, W., Palm, J., Zweigart, S., Wendl, M., Vogt, H., Ufert, K.-D., Calwer, H., Freienstein, B. and Karg, F. H.; Proc. 17th EC PVSEC, 1005 (2001).Google Scholar
4. Palm, J., Probst, V., Brummer, A., Stetter, W., Tölle, R., Niesen, T.P., Visbeck, S., Hernandez, O., Wendl, M., Vogt, H., Calwer, H., Freienstein, B. and Karg, F., presented at the EMRS 2002 in Strasbourg; accepted for publication in Thin Solid Films.Google Scholar
5. Tarrant, D. and Ermer, J., Proc. 23rd IEEE PVSC, 357 (1993).Google Scholar
6. Probst, V., Karg, F., Rimmasch, J., Riedl, W., Stetter, W., Harms, H., Eibl, O., Mat. Res. Soc. Symp. Proc. 426, 165 (1996).Google Scholar
7. Jensen, C.L., Tarrant, D.E., Ermer, J. H., Pollock, G.A., Proc. 23rd IEEE PVSC, 577 (1993).Google Scholar
8. Marudachalam, M., Birkmire, R.W., Hichiri, H., Schultz, J.M., Swartzlander, A., Al-Jassim, M.M., J. Appl. Phys. 82, 2896 (1997).Google Scholar
9. Brummer, A., Honkimäki, V., Berwian, P., Probst, V., Palm, J., Hock, R.; Formation of CuInSe(2) by the annealing of stacked elemental layers -Analysis by in situ high energy powder diffraction; accepted for publication in Thin Solid Films.Google Scholar
10. Berwian, P., Hirmke, J., Müller, G., Proc. of the ICTMC 2002, Paris, 14.10.18.10. 2003 Google Scholar
11. Dittrich, H., Prinz, U., Szot, J., Schock, H.W., Proc. 9th EC PVSEC, 163 (1988).Google Scholar
12. Basol, B.M., Halani, A., Leidholm, C., Norsworthy, G., Kapur, V., Swartzlander, A., and Matson, R., Progr. Photovolt.: Res. Appl. 8, 227 (2000).Google Scholar
13. Titus, J., Schock, H.W., Birkmire, R. W., Shafarman, W., Singh, U. P., Mat. Res. Proc. 668, H1.5.1 (2001).Google Scholar
14. Tanaka, Y., Akema, N., Morishita, T., Okumura, D., Kushiya, K., Proc. 17th EC PVSEC (2001)Google Scholar
15. Engelmann, M., McCandless, B.E., Birkmire, R.W., Thin Solid Films 387, 14 (2001).Google Scholar
16. Brummer, A. et al., to be published.Google Scholar