Hostname: page-component-788cddb947-r7bls Total loading time: 0 Render date: 2024-10-20T15:19:09.403Z Has data issue: false hasContentIssue false

Crystallography and Interfaces of Epitaxial Fluorite Metals and Insulators on Semiconductors

Published online by Cambridge University Press:  22 February 2011

J.M. Gibson
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
R.T. Tung
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
J.M. Phillips
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
J.M. Poate
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
Get access

Abstract

Crystals with the cubic fluorite structure and small lattice mismatches can be grown epitaxially on cubic semiconductors. In this manner thin-film single-crystal metals (NiSi2 and CoSi2) and insulators (e.g. CaF2 , BaF2) have been grown on silicon, germanium and indium phosphide. With close attention to deposition and growth parameters, afforded either by atomically clean conditions or transient thermal processing, great control can be exerted over the crystallography and interfaces of these systems. This has resulted in films with unique physical properties and exceptionally high quality and reproducibility. We review the microstructure of these films in this paper and identify two important new growth regimes for these materials: very thin films (less than 30Å) and transient thermal processing with ultra-fast laser pulses. Examination of the structure of these films, using high-resolution electron microscopy, provides insight into these nucleation and growth processes. One intriguing observation is that all these fluorite structure thin films have an overwhelming tendency to grow with a 180° rotated orientation (B) on (111) semiconductors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tung, R.T., to be publishedGoogle Scholar
2. Hensel, J.C., Tung, R.T., Poate, J.M. and Unterwald, F.C., this volumeGoogle Scholar
3. Phillips, J.M. and Gibson, J.M., this volumeGoogle Scholar
4. Tung, R.T., Bean, J.C., Gibson, J.M., Poate, J.M. and Jacobson, D.C., Appl. Phys. Lett. 40, 684 (1982)CrossRefGoogle Scholar
5. Cherns, D., Spence, J.C.H., Anstis, G.R. and Hutchison, J.L., Phil Mag. A46, 849 (1982)CrossRefGoogle Scholar
6. Gibson, J.M., Tung, R.T. and Poate, J.M., Mat. Res. Soc. Proc. 14, 395 (1983)CrossRefGoogle Scholar
7. Tu, K.N., Alessandrini, E.I., Chu, W.K., Krautle, H. and Mayer, J.W., Jap. J. Appl. Phys. Suppl. 2, 669 (1974)CrossRefGoogle Scholar
8. Chiu, K.C., Poate, J.M., Rowe, J.E., Sheng, T.T. and Cullis, A.G., Appl. Phys. Lett. 38, 988 (1981)CrossRefGoogle Scholar
9. Foll, H., Ho, P.S. and Tu, K.N., J. Appl. Phys. 52, 250 (1981)CrossRefGoogle Scholar
10. Gibson, J.M., Bean, J.C., Poate, J.M. and Tung, R.T., Thin Sol. Films 93, 99 (1982)CrossRefGoogle Scholar
11. Harrison, T.H., private communicationGoogle Scholar
12. Tung, R.T., Gibson, J.M. and Poate, J.M., Phys. Rev. Lett. 50, 429 (1983)CrossRefGoogle Scholar
13. Tung, R.T., Gibson, J.M. and Poate, J.M., Appl. Phys. Lett. 42, 888 (1983)CrossRefGoogle Scholar
14. Tung, R.T., Gibson, J.M., Jacobson, D.C. and Poate, J.M., Appl. Phys. Lett. 43, 476 (1983)CrossRefGoogle Scholar
15. Farrow, R.F.C., Sullivan, P.W., Williams, G.M., Jones, G.R. and Cameron, D.C., J. Vac. Sci. Tech. 19, 415 (1981).CrossRefGoogle Scholar
16. Asano, T. and Ishiwara, H., Appl. Phys. Lett. 42, 517 (1983)CrossRefGoogle Scholar
17. Gibson, J.M. and Phillips, J.M., Appl. Phys. Lett. 43, 828 (1983)CrossRefGoogle Scholar
18. Tu, K.N., Ottaviani, G., Gosele, U. and Foll, H., J. Appl. Phys. 54, 758 (1983)CrossRefGoogle Scholar
19. Comin, F. and Citrin, P., to be publishedGoogle Scholar
20. Gibson, J.M., Bean, J.C., Poate, J.M. and Tung, R.T., Appl. Phys. Lett. 41, 818 (1982)CrossRefGoogle Scholar
21. Lau, S.S. and Cheung, N.W., Thin Sol. Films 71, 117 (1980)CrossRefGoogle Scholar