Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-25T05:23:54.070Z Has data issue: false hasContentIssue false

Crystallographic and Metallurgical Characterization of Radiation Detector Grade Cadmium Telluride Materials

Published online by Cambridge University Press:  15 February 2011

C.J. Johnson
Affiliation:
eV PRODUCTS, div. of II-VI Incorporated, 375 Saxonburg Blvd., Saxonburg, PA 16056
E.E. Eissler
Affiliation:
eV PRODUCTS, div. of II-VI Incorporated, 375 Saxonburg Blvd., Saxonburg, PA 16056
S.E. Cameron
Affiliation:
eV PRODUCTS, div. of II-VI Incorporated, 375 Saxonburg Blvd., Saxonburg, PA 16056
Y. Kong
Affiliation:
Brookhaven National Laboratory, Department of Physics, Upton, NY 11973
S. Fan
Affiliation:
Brookhaven National Laboratory, Department of Physics, Upton, NY 11973
S. Jovanovic
Affiliation:
Brookhaven National Laboratory, Department of Physics, Upton, NY 11973
K.G. Lynn
Affiliation:
Brookhaven National Laboratory, Department of Physics, Upton, NY 11973
Get access

Abstract

Radiation detector grade CdTe crystals are characterized by several crystallographic and metallurgical techniques including infrared microscopy, dislocation etch pitting and X-ray diffraction. Results are presented for 50 detectors fabricated from an ingot produced by the high pressure Bridgman method. Data on the temperature dependence of leakage current and pulse height analysis are presented, along with measurements of room temperature charge transport properties. Attempts to relate crystal structure to detector performance will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Vydyanath, H.R., Ellsworth, J., Kennedy, J.J., Dean, B., Johnson, C.J., Neugebauer, G.T., Sepich, J. and Liao, P.K., J. Vac. Sci. Tech. B 10, 1476 (1992).Google Scholar
2. Mergui, S., Doctoral Thesis, Louis Pasteur University (Strasbourg, France), 1991.Google Scholar
3. Vydyanath, H.R., Ellsworth, J.A., Parkinson, J.B., Kennedy, J.J., Dean, B., Johnson, C.J., Neugebauer, G.T., Sepich, J. and Liao, P.K., accepted for publication in J. Electron. Mater., (July, 1993).Google Scholar
4. Dean, B.E., Johnson, C.J., McDevitt, S.C., Neugebauer, G.T., Sepich, J.L., Dobbyn, R.C., Kuriyama, M., Ellsworth, J., Vydyanath, H.R. and Kennedy, J.J., J. Vac. Sci. Tech. B 9, 1840 (1991).Google Scholar
5. Johnson, C.J., SPIE Proc. 1106, 56 (1989).Google Scholar
6. Raiskin, E. and Butler, J.F., IEEE Trans. on Nucl. Sci. NS-35, 82 (1988).Google Scholar
7. Nakagawa, K., Maeda, K. and Takeuchi, S., J. Phys. Soc. Jap. 49, 1909 (1980).Google Scholar
8. Musa, A. and Ponpon, J.P., Nucl. Instru. Meth. 216, 259 (1983).Google Scholar
9. Siffert, P., Nucl. Instru. Meth. 150, 1 (1978).Google Scholar
10. Hoschl, P., Poliva, P., Prosser, V., Vanecek, M. and Skrivankova, M., Rev. de Phys. Appl. 229, (1977).Google Scholar
11. Whited, R. C. and Schieber, M.M., Nucl. Instru. Meth. 162, 113 (1979).Google Scholar
12. Sakai, E., Nucl.Instru. Meth. 196, 121 (1982).Google Scholar
13. Schieber, C., Siffert, P., Holtzer, A. and Schieber, M., IEEE Tran. Nucl. Sci. NS-27, 276 (1980).Google Scholar