Skip to main content Accessibility help
×
Home

Crystallinity Uniformity of Microcrystalline Silicon Thin Films Deposited in Large Area Radio Frequency Capacitively-coupled Reactors

  • Benjamin Strahm (a1), Alan A. Howling (a2) and Christoph Hollenstein (a3)

Abstract

The microcrystalline silicon (μc-Si:H) intrinsic layer for application in micromorph tandem photovoltaic solar cells has to be optimized in order to achieve cost-effective mass production of solar cells in large area, radio frequency, capacitively-coupled PECVD reactors. The optimization has to be performed with regard to the deposition rate as well as to the crystallinity uniformity over the substrate area. The latter condition is difficult to achieve since the optimal solar grade μc-Si:H is deposited at the limit between a-Si:H and μc-Si:H material, where the film crystallinity is very sensitive to the plasma process. In this work, a controlled RF power nonuniformity was generated in a large area industrial reactor. The resulting film uniformity was studied as a function of the deposition regimes. Results show that the higher the input silane concentration, the more the uniformity of the crystallinity is sensitive to the RF power nonuniformity for films deposited at the limit between a-Si:H and μc-Si:H. The effect of the input silane concentration on the microstructure uniformity could be explained on the basis of an analytical plasma chemistry model. This result is important for reactor design. In reactors generating nonuniform plasma the input silane concentration has to be limited to low values in order to deposit films with uniform microstructure. To benefit from the high silane flow rate utilization fraction encountered only for higher input silane concentration, the RF power distribution has to be as uniform as possible over the whole substrate area.

Copyright

References

Hide All
[1] Meier, J. Kroll, U. Spitznagel, J. Benagli, S. Roschek, T. Pfanner, G. Ellert, C. Androutsopoulos, G. Hügli, A., Nagel, M. Bucher, C. Feitknecht, L. Büchel, G., and Buechel, A. Proc. 31st IEEE Photovoltaic Specialists Conference, Orlando (USA), 1464 (2005).
[2] Takatsuka, H. Yamauchi, Y. Kawamura, K. Mashima, H. and Takeuchi, Y., Thin Solid Films, 506-507, 1316 (2006).
[3] Howling, A.A., Sansonnens, L. Ballutaud, J. Grangeon, F. Delachaux, T. Hollenstein, Ch., Daudrix, V. and Kroll, U. 16th European Photovoltaic Solar Energy Conference, Glasgow (UK), 375379 (2000).
[4] Strahm, B. Howling, A.A., Sansonnens, L. and Hollenstein, Ch., Plasma Sources Sci. Technol., 16, 8089 (2007).
[5] Howling, A.A., Strahm, B. Colsters, P. Sansonnens, L. and Hollenstein, Ch., Plasma Sources Sci. Technol., 16, 679696 (2007).
[6] Howling, A.A., Derendinger, L. Sansonnens, L. Schmidt, H. Hollenstein, Ch. Sakanaka, E. and Schmitt, J.P.M., J. Appl. Phys., 97, 123308 (2005).
[7] Sansonnens, L. Strahm, B. Derendinger, L. Howling, A.A., Hollenstein, Ch., Ellert, C. and Schmitt, J.P.M., J. Vac. Sci. Technol. A, 23, 922926 (2005)
[8] Donker, M.N. van den, Rech, B. Finger, F. Kessels, W.M.M. and Sanden, M.C.M. van de, Appl. Phys. Lett., 87, 263503 (2005).
[9] Sansonnens, L. Howling, A.A. and Hollenstein, Ch., Plasma Sources Sci. Technol., 9, 205209 (2000).
[10] Droz, C. Vallat-Sauvain, E., Bailat, J. Feitknecht, L. Meier, J. and Shah, A. Solar Energy Mater. Solar Cells, 81, 6171 (2004).
[11] Vetterl, O. Finger, F. Carius, R. Hapke, P. Houben, L. Kluth, O. Lambertz, A. Mück, A., Rech, B. and Wagner, H. Solar Energy Mater. Solar Cells, 62, 97108 (2000).
[12] Meiling, H. Sark, W.G.J.H.M. van, Bezemer, J. and Weg, W.F. van der, J. Appl. Phys., 80, 35463551 (1996).
[13] Howling, A.A., Sansonnens, L. and Hollenstein, Ch., Thin Solid Films, 515, 50595064 (2007).
[14] Howling, A.A., Dorier, J.-L., Hollenstein, Ch., Kroll, U. and Finger, F. J. Vac. Sci. Technol. A, 10, 10801085 (1992).
[15] Sansonnens, L. Howling, A.A. and Hollenstein, Ch., Plasma Sources Sci. Technol., 7, 114118 (1998).
[16] Amanatides, E. Mataras, D. and Rapakoulias, D.E., Thin Solid Films, 383, 1518 (2001).
[17] Finger, F. Hapke, P. Luysberg, M. Carius, R. Wagner, H. and Scheib, M. Appl. Phys. Lett., 65, 25882590 (1994).
[18] Schmidt, H. Sansonnens, L. Howling, A.A., Hollenstein, Ch., Elyaakoubi, M. and Schmitt, J.P.M, J. Appl. Phys., 95, 45594564 (2004).
[19] Sansonnens, L. Schmidt, H. Howling, A.A., Hollenstein, Ch., Ellert, C. and Buechel, A. J. Vac. Sci. Technol. A, 24, 14251430 (2006).
[20] Sansonnens, L. and Schmitt, J.P.M., Appl. Phys. Lett., 82, 182184 (2003).

Keywords

Related content

Powered by UNSILO

Crystallinity Uniformity of Microcrystalline Silicon Thin Films Deposited in Large Area Radio Frequency Capacitively-coupled Reactors

  • Benjamin Strahm (a1), Alan A. Howling (a2) and Christoph Hollenstein (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.