Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T22:31:06.791Z Has data issue: false hasContentIssue false

Crystallinity of Solution Deposited TiO2 Films

Published online by Cambridge University Press:  15 February 2011

Gregory. K. L. Goh*
Affiliation:
Institute of Materials Research and Engineering 3 Research Link, Singapore 117602, Singapore Email: g-goh@imre.a-star.edu.sg
Get access

Abstract

Rutile and anatase TiO2 films were grown on glass substrates from acidic titanium precursor solutions from 60°C upwards. Anatase synthesized at 60°C had a crystallinity of 15% that increased to 54% for a growth temperature of 200°C. A similar crystallinity by conventional heat treatment of the 60°C material was attained only at 400°C. It is believed that more complete dehydration of titanium complexes at higher growth temperatures led to less disruption of the long range attractive forces required for the formation of the periodic crystalline lattice. Rutile films grown at 60°C were determined to have a refractive index of 2.4. This is lower than the bulk value of 2.65 because the as-synthesized rutile material was only 29% crystalline and also contained nano-sized pores.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Dutschke, A., Diegelmann, C. and Lobmann, P., J. Mater. Chem. 13, 1058 (2003).Google Scholar
2 Kishimoto, H., Takahama, K., Hashimoto, N., Aoi, Y. and Deki, S., J. Mater. Chem. 8, 2019 (1998).Google Scholar
3 Yu, J-G., Yu, H-G., Cheng, B., Zhao, X-J., Yu, J. C. and Ho, W-K., J. Phys. Chem. B 107, 13871 (2003).Google Scholar
4 Goh, G. K. L., Han, X. Q., Liew, C. P. K. and Tay, C. S. S., J. Electrochem. Soc. accepted (2005).Google Scholar
5 Imai, H., Takei, Y., Shimizu, K., Matsuda, M. and Hirashima, H., J. Mater. Chem. 9, 2971 (1999).Google Scholar
6 Yu, J. C., Yu, J., Ho, W., Jiang, Z. and Zhang, L., Chem. Mater. 14, 3808 (2002).Google Scholar
7 Zheng, Y., Shi, E., Chen, Z., Li, W. and Hu, X., J. Mater. Chem. 11, 1547 (2001).Google Scholar
8 Goh, G. K. L., Levi, C. G. and Lange, F. F., J. Mater. Res. 17 (11), 2852 (2002).Google Scholar
9 Goh, G. K. L., Haile, S. M., Levi, C. G. and Lange, F. F., J. Mater. Res. 17 (12), 3168 (2002).Google Scholar
10 Gadsen, J. A., Infrared Spectra of Minerals and Related Inorganic Compounds (Butterworths, London, 1975), p. 16.Google Scholar
11 Yang, H. G. and Zeng, H. C., J. Phys. Chem. B 107, 12244 (2003).Google Scholar
12 Goh, G. K. L, Donthu, S. K. and Pallathadka, P. K., Chem. Mater. 16, 2857 (2004).Google Scholar
13 Wang, X-P., Yu, Y., Hu, X-F. and Gao, L., Thin Solid Films 371, 148 (2000).Google Scholar
14 Peng, C. H. and Desu, S. B., J. Am. Ceram. Soc. 77 (4), 929 (1994).Google Scholar
15 Gao, Y., Masuda, Y. and Kuomoto, K., Chem. Mater. 16, 1062 (2004).Google Scholar
16 DeVore, J. R., J. Opt. Soc. Am. 41 (6), 416 (1951).Google Scholar
17 Zhao, Z., Tay, B. K. and Yu, G., Appl. Opt. 43 (6), 1281 (2004).Google Scholar