Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-18T01:57:47.826Z Has data issue: false hasContentIssue false

Crystalline Si Films Grown Epitaxially at Low Temperatures by ECR-PECVD

Published online by Cambridge University Press:  17 March 2011

J. Platen
Affiliation:
Hahn-Meitner-Institut, Abteilung Silizium-Photovoltaik, Kekuléstr.5, D - 12489 Berlin, Germany
B. Selle
Affiliation:
Hahn-Meitner-Institut, Abteilung Silizium-Photovoltaik, Kekuléstr.5, D - 12489 Berlin, Germany
S. Christiansen
Affiliation:
Universität Erlangen-Nürnberg, Institut für Werkstoffwissenschaften, Mikrocharakterisierung, Cauerstr. 6, D - 91058 Erlangen, Germany
M. Nerding
Affiliation:
Universität Erlangen-Nürnberg, Institut für Werkstoffwissenschaften, Mikrocharakterisierung, Cauerstr. 6, D - 91058 Erlangen, Germany
M. Schmidbauer
Affiliation:
Humboldt-Universität Berlin, Institut für Physik, D - 10117 Berlin, Germany
W. Fuhs
Affiliation:
Hahn-Meitner-Institut, Abteilung Silizium-Photovoltaik, Kekuléstr.5, D - 12489 Berlin, Germany
Get access

Abstract

Electron cyclotron resonance plasma enhanced chemical vapor deposition (ECR-PECVD) is used to grow thin epitaxial films on Si(100) wafers. We report on systematic variations of deposition parameters like substrate temperature, substrate dc bias voltage, and gas composition. The structural quality was significantly improved by increasing the substrate temperature from 325 to 500 °C. Simultaneously, compressive lattice strain tends to increase. A negative dc bias voltage resulted in highly disordered films and increased surface roughness due to enhanced ion damage. In contrast positive bias voltages decreased the defect creation by reducing the ion bombardment of the surface during growth. Under so far optimized conditions the remaining disorder is given by two-dimensional, extended defects running parallel to the growth direction and forming grain boundaries with a lateral spacing of 500–700 nm. The single grains are essentially free of one- and two-dimensional defects and show the same orientation as the substrate. By reducing the H2 dilution and adding Ar to the excitation gas the deposition rate increased from 5.3 to 16.2 nm/min. This resulted in inferior structural quality which might be attributed to the reduced etching effect, the enhanced ion bombardment and/or the increased growth rate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bergmann, R. B., Zacsek, C., Jensen, N., Oelting, S. and Werner, J. H., Appl. Phys. Lett. 72, 2996, (1998).Google Scholar
2. Conrad, E., Elstner, L., Fuhs, W., Henrion, W., Müller, P., Poortmans, J., Selle, B. and Zeimer, U., in 14th Europ. Photovolt. Solar Energy Conf., Barcelona, Spain, 1997, pp.1411.Google Scholar
3. Lips, K., Platen, J., Brehme, S., Gall, S., Sieber, I., Elstner, L. and Fuhs, W., Mat. Res. Soc. Symp. Proc. 536, 457, (1998).Google Scholar
4. Handbook of Modern Ion Beam Materials Analysis, ed. Tesmer, J. R. and Nastasi, M. (Material Research Society, Pittsburgh, 1995), pp.11 Google Scholar
5. Das, D., Solid State Phenom. 44–46, 227, (1995).Google Scholar
6. Okada, Y., in Properties of crystalline silicon, Vol. 20, ed. George, A. (IEE Books, London, 1999), pp. 92.Google Scholar
7. Herrero, C. P., Stutzmann, M. and Breitschwerdt, A., Phys. Rev. B 43, 1555, (1991).Google Scholar
8. Abe, K., Watahiki, T., Yamada, A. and Konagai, M., Jpn. J. Appl. Phys. 37, 1202, (1998).Google Scholar
9. Rosenblad, C., Deller, H. R., Dommann, A., Meyer, T., Schroeter, P. and Känel, H. v., J. Vac. Sci. Technol. A 16, 2785, (1998).Google Scholar
10. Nozawa, R., Takeda, H., Ito, M., Hori, M. and Goto, T., J. Appl. Phys. 81, 8035, (1997).Google Scholar
11. Vossen, J. L. and Cuomo, J. J., in Thin Film Processes, ed. Vossen, J. L. and Kern, W. (Academic Press, Inc., London, 1978), pp. 12.Google Scholar
12. Rossnagel, S. M., Schatz, K., Whitehair, S. J., Guarnier, R. C., Ruzic, D. N. and Cuomo, J. J., J. Vac. Sci. Technol. A 9, 702, (1991).Google Scholar
13. DeBoer, S. J., Dalal, V. L., Chumanov, G. and Bartels, R., Appl. Phys. Lett. 66, 2528, (1995).Google Scholar
14. Tsai, C. C., in Amorphous Silicon and Related Materials, ed. Fitzsche, H. (World Scientific Publishing Company, Singapore, 1988), pp. 123.Google Scholar
15. Jorke, H., Herzog, H.-J. and Kibbel, H., Phys. Rev. B 40, 2005, (1989).Google Scholar