Skip to main content Accessibility help

Crystalline Si Films Grown Epitaxially at Low Temperatures by ECR-PECVD

  • J. Platen (a1), B. Selle (a1), S. Christiansen (a2), M. Nerding (a2), M. Schmidbauer (a3) and W. Fuhs (a1)...


Electron cyclotron resonance plasma enhanced chemical vapor deposition (ECR-PECVD) is used to grow thin epitaxial films on Si(100) wafers. We report on systematic variations of deposition parameters like substrate temperature, substrate dc bias voltage, and gas composition. The structural quality was significantly improved by increasing the substrate temperature from 325 to 500 °C. Simultaneously, compressive lattice strain tends to increase. A negative dc bias voltage resulted in highly disordered films and increased surface roughness due to enhanced ion damage. In contrast positive bias voltages decreased the defect creation by reducing the ion bombardment of the surface during growth. Under so far optimized conditions the remaining disorder is given by two-dimensional, extended defects running parallel to the growth direction and forming grain boundaries with a lateral spacing of 500–700 nm. The single grains are essentially free of one- and two-dimensional defects and show the same orientation as the substrate. By reducing the H2 dilution and adding Ar to the excitation gas the deposition rate increased from 5.3 to 16.2 nm/min. This resulted in inferior structural quality which might be attributed to the reduced etching effect, the enhanced ion bombardment and/or the increased growth rate.



Hide All
1. Bergmann, R. B., Zacsek, C., Jensen, N., Oelting, S. and Werner, J. H., Appl. Phys. Lett. 72, 2996, (1998).
2. Conrad, E., Elstner, L., Fuhs, W., Henrion, W., Müller, P., Poortmans, J., Selle, B. and Zeimer, U., in 14th Europ. Photovolt. Solar Energy Conf., Barcelona, Spain, 1997, pp.1411.
3. Lips, K., Platen, J., Brehme, S., Gall, S., Sieber, I., Elstner, L. and Fuhs, W., Mat. Res. Soc. Symp. Proc. 536, 457, (1998).
4. Handbook of Modern Ion Beam Materials Analysis, ed. Tesmer, J. R. and Nastasi, M. (Material Research Society, Pittsburgh, 1995), pp.11
5. Das, D., Solid State Phenom. 44–46, 227, (1995).
6. Okada, Y., in Properties of crystalline silicon, Vol. 20, ed. George, A. (IEE Books, London, 1999), pp. 92.
7. Herrero, C. P., Stutzmann, M. and Breitschwerdt, A., Phys. Rev. B 43, 1555, (1991).
8. Abe, K., Watahiki, T., Yamada, A. and Konagai, M., Jpn. J. Appl. Phys. 37, 1202, (1998).
9. Rosenblad, C., Deller, H. R., Dommann, A., Meyer, T., Schroeter, P. and Känel, H. v., J. Vac. Sci. Technol. A 16, 2785, (1998).
10. Nozawa, R., Takeda, H., Ito, M., Hori, M. and Goto, T., J. Appl. Phys. 81, 8035, (1997).
11. Vossen, J. L. and Cuomo, J. J., in Thin Film Processes, ed. Vossen, J. L. and Kern, W. (Academic Press, Inc., London, 1978), pp. 12.
12. Rossnagel, S. M., Schatz, K., Whitehair, S. J., Guarnier, R. C., Ruzic, D. N. and Cuomo, J. J., J. Vac. Sci. Technol. A 9, 702, (1991).
13. DeBoer, S. J., Dalal, V. L., Chumanov, G. and Bartels, R., Appl. Phys. Lett. 66, 2528, (1995).
14. Tsai, C. C., in Amorphous Silicon and Related Materials, ed. Fitzsche, H. (World Scientific Publishing Company, Singapore, 1988), pp. 123.
15. Jorke, H., Herzog, H.-J. and Kibbel, H., Phys. Rev. B 40, 2005, (1989).

Crystalline Si Films Grown Epitaxially at Low Temperatures by ECR-PECVD

  • J. Platen (a1), B. Selle (a1), S. Christiansen (a2), M. Nerding (a2), M. Schmidbauer (a3) and W. Fuhs (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed