Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-20T00:56:42.823Z Has data issue: false hasContentIssue false

Crystalline Boron Carbide Encapsulated Into Carbon Nanoclusters from Arc-Discharge Soot

Published online by Cambridge University Press:  15 February 2011

Supapan Seraphin
Affiliation:
Department of Materials Science and Engineering, University of Arizona, Tucson, AZ 85721
Dan Zhou
Affiliation:
Department of Materials Science and Engineering, University of Arizona, Tucson, AZ 85721
Jun Jiao
Affiliation:
Department of Materials Science and Engineering, University of Arizona, Tucson, AZ 85721
Get access

Abstract

Using a boron-containing composite anode in an arc discharge, we found in the soot on the reactor walls graphitic multiwalled carbon clusters that contained boron carbide crystals, as identified by high resolution transmission electron microscopy (HRTEM), electron energy loss spectroscopy (EELS), and electron diffraction. The encapsulants are compounds of the lightest element that has yet been encapsulated, and the first of the non-metallic. The multiwalled graphitic cages partially encapsulating the boron compounds have rarely been observed in the soot of arc-discharge material produced from anodes not containing boron. We explain this exception by the known tendency of boron to catalyze graphitization.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Ebbesen, T. W. and Ajayan, P. M., Nature 358, 220 (1992)Google Scholar
[2] Bethune, D. S., Klang, C. H., Vries, M. S. de, Gorman, G., Savoy, R., Vazquez, J., and Beyers, R., Nature 363, 605 (1993)Google Scholar
[3] Iijima, S. and Ichihashi, T., Nature 363, 603 (1993)Google Scholar
[4] Seraphin, S. and Zhou, D., Appl. Phys. Lett. 64, 2087 (1994)Google Scholar
[5] Seraphin, S., Zhou, D., Jiao, J., Minke, M. A., Wang, S., Yadav, T., and Withers, J. C., Chem. Phys. Lett. 217,191 (1994)Google Scholar
[6] Ruoff, R. S., Lorents, D. C., Chan, B., Malhotra, R., and Subramoney, S., Science 259, 346 (1993)Google Scholar
[7] Tomita, M., Saito, Y., and Hayashi, T., Jpn. J. Appl. Phys. 32, L280 (1993)Google Scholar
[8] Seraphin, S., Zhou, D., Jiao, J., Withers, J. C., and Loutfy, R., Nature 362, 503 (1993)Google Scholar
[9] Seraphin, S., Zhou, D., Jiao, J., Withers, J. C., and Loutfy, R., Appl. Phys. Lett. 63, 2073 (1993)Google Scholar
[10] Saito, Y., Okuda, M., Yoshikawa, T., Bandow, S., Yamamuro, S., Wakoh, K., Sumiyama, K., and Suzuki, K., Jpn. J. Appl. Phys. 33, L186 (1994)Google Scholar
[11] Saito, Y., Yoshikawa, T., Okuda, M., Okohchi, M., Ando, Y., Kasuya, A., and Nishina, Y., Chem. Phys. Lett. 209, 72 (1993)Google Scholar
[12] Seraphin, S., J. Electrochemical Society, in: Proceedings of the Symposium on Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, Vol. 94–24, eds. Kadish, K. M. and Ruoff, R. S. (The Electrochemical Society, INC.,1994) p. 1433.Google Scholar
[13] Bandow, S. and Saito, Y., Jpn. J. Appl. Phys. 32, L1677 (1993)Google Scholar
[14] Subramoney, S., Ruoff, R. S., Lorents, D. C., and Malhotra, R., Nature 366, 637 (1993)Google Scholar
[15] Saito, Y., Yoshikawa, T., Okuda, M., Fujimoto, N., Sumiyama, K., Suzuki, K., Kasuya, A., and Nishina, Y., J. Phys. Solids 54, 1849 (1993)Google Scholar
[16] Seraphin, S., Wang, S., Zhou, D., and Jiao, J., Chem. Phys. Lett. 228, 506 (1994)Google Scholar
[17] Lin, X., Wang, X. K., Dravid, V. P., Chang, R. P. H., and Ketterson, J. B., Appl. Phys. Lett. 64, 181 (1994)Google Scholar
[18] Zhou, D., Seraphin, S., and Wang, S., Appl. Phys. Lett. 65, 1593 (1994)Google Scholar
[19] Heath, J. R., O'Brien, S. C., Zhang, Q., Liu, Y., Curl, R. F., Kroto, H. W., Tittel, F. K., and Smalley, R. E., J. Am. Chem. Soc. 107, 7779 (1985)Google Scholar
[20] Cox, D. M., Trevor, D. J., Reichmann, K. C., and Kaldor, A., J. Am. Chem. Soc. 108 2457 (1986)Google Scholar
[21] Guo, T., Jin, C., and Smalley, R. E., J. Phys. Chem. 95, 4948 (1991)Google Scholar
[22] Oya, A. and Otani, S., Carbon 17, 131 (1979)Google Scholar
[23] Clark, H. K., J. Am. Chem. Soc. 65, 2215 (1943)Google Scholar
[24] Fischbach, D. B., in: Chemistry and Physics of Carbon, Vol 7, ed. Walker, P. L. Jr., (Marcel Dekker, Inc., 1971) p. 86.Google Scholar
[25] Katz, R. N. and Gazzara, C. P., J. Mater. Sci. 3, 61 (1968)Google Scholar
[26] Turnbull, J. A., Stagg, M. S., and Eeles, W. T., Carbon 3, 387 (1967)Google Scholar
[27] Murty, H. N., Biederman, D. L., and Heintz, E., Fuel 56, 305 (1977)Google Scholar