Skip to main content Accessibility help

Crystal to Glass Transition and Melting in Two Dimensions

  • M. Li (a1) (a2), W. L. Johnson (a1) and W. A. Goddard (a2)


Thermodynamic properties, structures, defects and their configurations of a two-dimensional Lennard-Jones (LJ) system are investigated close to crystal to glass transition (CGT) via molecular dynamics simulations. The CGT is achieved by saturating the LJ binary arrays below glass transition temperature with one type of the atoms which has different atomic size from that of the host atoms. It was found that for a given atomic size difference larger than a critical value, the CGT proceeds with increasing solute concentrations in three stages, each of which is characterized by distinct behaviors of translational and bond-orientational order correlation functions. An intermediate phase which has a quasi-long range orientational order but short range translational order has been found to exist prior to the formation of the amorphous phase. The destabilization of crystallinity is observed to be directly related to defects. We examine these results in the context of two dimensional (2D) melting theory. Finite size effects on these results, in particular on the intermediate phase formation, are discussed.



Hide All
1. Johnson, W. L., Prog. Mater. Sci., 30, 81, (1986);
Cahn, R. W. and Johnson, W. L., J. Mater. Sci., 1, 724, (1986).
2. Strandburg, K. J., Rev. Mod. Phys., 60, 161, (1988);
Abraham, F.F., Phys. Rept., 80, 339, (1981).
3. Wolf, D., Okamoto, P. R., Yip, S., et al., J. Mater. Res., 5, 286, (1990);
Okmoto, P. R., and Meshii, M., Science of Advanced Materials, edited by Wiedersich, H. and Meshii, M. (ASM International, Materials Park, OH, 1990), pp. 33.
4. Born, M., J. Chem. Phys., 7, 591, (1939).
5. Talion, J. L. and Robinson, W. H., Phil. Mag. A, 36, 741, (1977);
Talion, J. L., Phil. Mag. A., 39, 151, (1979).
6. Li, M. and Johnson, W. L., Phys. Rev. Lett., 70, 1120, (1993);
Johnson, W. L., Li, M. and Krill, C. E., J. Non-crystal. Sol., 156, 481, (1993).
7. Krill, C. E., Li, J., Etti, C., Samwer, K. and Yellon, W. B., J. Non-cryst. Sol., 156, 506, (1993).
8. Koike, J., Phys. Rev. B, 47, 7700, (1993).
9. Devanathan, R., Lam, N. Q., Okamoto, P. R. and Meshii, M., MRS Symposia Proceeding No. 291. pp. 653 (MRS, Pittsburgh, 1992).
10. Fecht, H. and Johnson, W. L., Nature, 334, 50, (1988).
11. Luzzi, D. E. (ed.), J. Alloys and Compounds, 194, (1993)
12. Li, M. and Johnson, W. L., Phys. Rev. B, 46, 5237, (1992).
13. Li, M., Johnson, W. L. and Goddard, W. A., unpublished results.
14. Nelson, D. R. and Halperin, B. I., Phys. Rev. B, 19, 2457, (1979).
15. Nelson, D. R., Rubinstein, M. and Spaepen, F., Phil. Mag. A, 46, 105, (1982).
16. Allen, M. P., Frekel, D. and Gignac, W., J. Chem. Phys., 78, 4206, (1983).
17. Johnson, W. L., unpublished results.
18. Egami, T. and Waseda, Y., J. Non-Cryst. Sol, 64, 113, (1984);
Giesson, B. C., Proc. 4th Int. Conf. on Rapidly Quenched Metals, edited by Masumoto, T. and Suzuki, K., (Japan Institute of Metals, Sendai, 1982), Vol. 1, pp. 213.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed