Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-12T02:16:27.151Z Has data issue: false hasContentIssue false

Crystal Polarity and Electrical Properties of Heavily Doped ZnO Films

Published online by Cambridge University Press:  11 December 2012

Yutaka Adachi
Affiliation:
National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
Naoki Ohashi
Affiliation:
National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
Isao Sakaguchi
Affiliation:
National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
Hajime Haneda
Affiliation:
National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
Get access

Abstract

In this study, ZnO f ilms heavily doped with Al or Ga were grown on a polarity-controlled buffer layer using pulsed laser deposition. The films prepared using a 1 mol% Al-doped target with the buffer layer grown at 700 °C had the c(+)-face, whereas the films with the buffer layer grown at 400 °C had the c(-)-face, which means that the polarity control can be successfully carried out using the buffer layer. However, the films prepared using targets doped with more than 1 mol% Al or Ga had the c(+)-face regardless of the polarity of the buffer layer. The 1 mol% Al-doped ZnO film with the c(+)-face had lower electron concentration and higher growth rate than the film with the c(-)-face. This result indicates that the Al content in the film with the c(-)-face was larger than that in the film with the c(+)-face.

Type
Articles
Copyright
Copyright © Materials Research Society 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ellmer, K., J. Phys. D; Appl. Phys. 34(21), 3097 (2001).CrossRefGoogle Scholar
Wander, A., Schedin, F., Steadman, P., Norris, A., McGrath, R., Turner, T.S., Thornton, G. and Harrison, N.M., Phys. Rev. Lett. 86(17), 3811 (2001).CrossRefGoogle Scholar
Ohashi, N., Takahashi, K., Hishita, S., Sakaguchi, I., Funakubo, H. and Haneda, H., J. Electrochem. Soc. 154(2), D82 (2007).CrossRefGoogle Scholar
Ohashi, N., Kataoka, K., Ohgaki, T., Sakaguchi, I., Haneda, H., Kitamura, K. and Fujimoto, M., Jpn. J. Appl. Phys. Part 2 46(41-44), L1042 (2007).CrossRefGoogle Scholar
Adachi, Y., Ohashi, N., Ohnishi, T., Ohgaki, T., Sakaguchi, I., Haneda, H. and Lippmaa, M., J. Mater. Res. 23(12), 3269 (2008).CrossRefGoogle Scholar
Adachi, Y., Ohashi, N., Ohgaki, T., Ohnishi, T., Sakaguchi, I., Ueda, S., Yoshikawa, H., Kobayashi, K., Williams, J.R., Ogino, T. and Haneda, H., Thin Solid Films 519(18), 5875 (2011).CrossRefGoogle Scholar
Maki, H., Sakaguchi, I., Ohashi, N., Sekiguchi, S., Haneda, H., Tanaka, J. and Ichinose, N., Jpn. J. Appl. Phys. Part 1 42(1), 75 (2003).CrossRefGoogle Scholar
Adachi, Y., Ohashi, N., Sakaguchi, I. and Haneda, H., presented at the IWZnO 2012, Nice, France, 2012, (unpublished).Google Scholar
Ohtomo, A., Kawasaki, M., Koida, T., Masubuchi, K., Koinuma, H., Sakurai, Y., Yoshida, Y., Yasuda, T. and Segawa, Y., Appl. Phys. Lett. 72(19), 2466 (1998).CrossRefGoogle Scholar
Kato, H., Sano, M., Miyamoto, K. and Yao, T., J Cryst Growth 265(3-4), 375 (2004).CrossRefGoogle Scholar
Hofmann, D.M., Hofstaetter, A., Leiter, F., Zhou, H.J., Henecker, F., Meyer, B.K., Orlinskii, S.B., Schmidt, J. and Baranov, P.G., Phys. Rev. Lett. 88(4), (2002).Google Scholar