Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-27T03:06:30.794Z Has data issue: false hasContentIssue false

Crystal Growth Rates in Doped SbxTe Fast-Growth Phase-Change Films Studied with Transmission Electron Microscopy

Published online by Cambridge University Press:  01 February 2011

Bart J. Kooi
Affiliation:
B.J.Kooi@rug.nl, Univeristy of Groningen, Applied Physics, Nijenborgh 4, Groningen, NL-9747AG, Netherlands, 31 503634896, 31 503634881
Ramanathaswamy Pandian
Affiliation:
R.Pandian@rug.nl, Univeristy of Groningen, Department of Applied Physics, Zernike Institute for Advanced Materials, Nijenborgh 4, Groningen, NL-9747AG, Netherlands
Jeff Th. M. De Hosson
Affiliation:
J.T.M.De.Hosson@rug.nl, Univeristy of Groningen, Department of Applied Physics, Zernike Institute for Advanced Materials, Nijenborgh 4, Groningen, NL-9747AG, Netherlands
Get access

Abstract

Isothermal crystallization of doped SbxTe fast-growth phase-change films was investigated using transmission electron microscopy with in situ heating. SbxTe films with four different values for the Sb/Te ratio, x=3.0, 3.3, 3.6 and 4.2, were analyzed and the films were sandwiched between two types of dielectric layers. One dielectric layer type is based on 80at.%ZnS-20at.%SiO2, the other on (Ge,Cr)N. The crystal growth rates reduce if the phase-change films are sandwiched between amorphous dielectric layers. The reduction is very pronounced at the lowest measured temperatures (150 °C), becomes smaller at higher temperatures and probably disappears at around 200 °C. The crystal growth rates increase with increasing Sb/Te ratio, but the activation energy for crystal growth is not significantly affected by the Sb/Te ratio. Finally a systematic study of the effect of the electron beam of the TEM on the crystal growth rates is performed showing accelerated growth rates. The present work shows that particularly at relative low temperatures, just above the glass-transition temperature, the growth rates as limited by the atomic mobilities are sensitive to various (boundary) conditions, e.g. capping layers and irradiation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Borg, H. J. M. van Schijndel, Rijpers, J. C. N. Lankhorst, M. H. R. Zhou, G. Dekker, M. J. Ubbens, I. P. D. and Kuijper, M. Jpn. J. Appl. Phys. Part 1 40, 1592 (2001).Google Scholar
2. Oomachi, N. Ashida, S. Nakamura, N. Yusu, K. and Ichihara, K. Jpn. J. Appl. Phys. Part 1 41, 1695 (2002).Google Scholar
3. Khulbe, P. K. Hurst, T. Horie, M. and Mansuripur, M. Appl. Opt. 41, 6220 (2002).Google Scholar
4. Her, Y.C. and Hsu, Y.S. Jpn. J. Appl. Phys. Part 1 42, 804 (2003).Google Scholar
5. Lankhorst, M. H. R. Pieterson, L. van, Schijndel, M. van, Jacobs, B. A. J. and Rijpers, J. C. N. Jpn. J. Appl. Phys. Part 1 42, 863 (2003).Google Scholar
6. Her, Y.C. Chen, H. and Hsu, Y.S. J. Appl. Phys. 93, 10097 (2003).Google Scholar
7. Hellmig, J. Mijiritskii, A. V. Borg, H. J. Musialkova, K. and Vromans, P. Jpn. J. Appl. Phys. Part 1 42, 848 (2003).Google Scholar
8. Chang, D. Yoon, D. Ro, M. Hwang, I. Park, I. and Shin, D. Jpn. J. Appl. Phys., Part 1 42, 754 (2003).Google Scholar
9. Lankhorst, M. H. R. Ketelaars, B. W. S. M. M. and Wolters, R. A. M. Nature Mater. 4, 347 (2005).Google Scholar
10. Friedrich, I. Weidenhof, V. Lenk, S. Wuttig, M. Thin Solid Films 389, 239 (2001).Google Scholar
11. Kooi, B.J. Groot, W.M.G., Hosson, J.Th.M. De, J. Appl. Phys. 95, 924 (2004).Google Scholar
12. Kooi, B. J. and Hosson, J.Th. M. De, J. Appl. Phys. 95, 4714 (2004).Google Scholar
13. Kalb, J. Spaepen, F. and Wuttig, M. Appl. Phys. Lett. 84, 5240 (2004).Google Scholar
14. Privitera, S. Bongiorno, C. Rimini, E. Zonca, R. Pirovano, A. R. Bez., Mat. Res. Soc. Symp. Proc. 803, HH1.4.1 (2004).Google Scholar
15. Ohshima, N. J. Appl. Phys. 79, 8357 (1996).Google Scholar
16. Friedrich, I. Weidenhof, V. Njoroge, W. Franz, P. Wuttig, M. J. Appl. Phys. 87, 41304134 (2000).Google Scholar
17. Ruitenberg, G. Petford-Long, A. K., Doole, R.C. J. Appl. Phys. 92, 3116 (2002).Google Scholar
18. Kooi, B.J. Phys. Rev. B 70, 224108, (2004).Google Scholar
19. Morilla, M. C. Afonso, C. N. Petford-Long, A. K., and Doole, R. C. Philos. Mag. A 73, 1237 (1996).Google Scholar