Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T22:04:02.223Z Has data issue: false hasContentIssue false

Cross-Sectional Scanning Tunneling Microscopy of III-V Semiconductor Structures

Published online by Cambridge University Press:  21 February 2011

R. M. Feenstra
Affiliation:
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598
A. Vaterlaus
Affiliation:
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598
J. M. Woodall
Affiliation:
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598
D. A. Collins
Affiliation:
T. J. Watson Sr. Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125
T. C. McGill
Affiliation:
T. J. Watson Sr. Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125
Get access

Abstract

The method of cross-sectional scanning tunneling microscopy (STM) is described. Illustrative examples are given of studies of III-V semiconductor systems, including low-temperature-grown (LT) GaAs, and InAs/GaSb superlattices. In each case, the STM permits the observation of structural features on an atomic scale. The associated electronic spectroscopy for states a few eV on either side of the Fermi-level can be determined. Such information is relevant for the operation of devices constructed from these layered semiconductor systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Salemink, H. W. M. Albrektsen, O., and Koenraad, P., Phys. Rev. B 45, 6946 (1992).Google Scholar
2. Yu, E. T. Johnson, M. B. and Halbout, J.-M., Appl. Phys. Lett. 61, 201 (1992).CrossRefGoogle Scholar
3. Vaterlaus, A., Feenstra, R. M. Kirchner, P. D. Woodall, J. M. and Pettit, G. D. J. Vac. Sci. Technol. B 11, 1502 (1993).CrossRefGoogle Scholar
4. Gwo, S., Chao, K.-J., Shih, C. K., Sadra, K., and Streetman, B. G. Phys. Rev. Lett. 71, 1883 (1993).CrossRefGoogle Scholar
5. Burleigh Instruments, Fishers, New York.Google Scholar
6. See, e.g., Kaminska, M. and Weber, E. R. Mat. Sci. Forum 83–87, 1033 (1992) and references therein.Google Scholar
7. Feenstra, R. M. Woodall, J. M. and Pettit, G. D. Phys. Rev. Lett. 71, 1176 (1993).Google Scholar
8. Feenstra, R. M. A. Vaterlaus, Woodall, J. M. and Pettit, G. D. Appl. Phys. Lett. 63, 2528 (1993).Google Scholar
9. See, e.g., Miles, R. H. Schulman, J. N. Chow, D. H. and McGill, T. C. Semicond. Sci. Technol. 8, S102, (1993), and references therein.CrossRefGoogle Scholar
10. Feenstra, R. M. Collins, D. A. Ting, D. Z.-Y., Wang, M. W. and McGill, T. C. submitted to Phys. Rev. Lett.Google Scholar
11. Mårtensson, P. and Feenstra, R. M. Phys. Rev. B39, 7744 (1988).Google Scholar
12. Methods of Experimental Physics, Vol. 27, Scanning Tunneling Microscopy, eds. Stroscio, J. A. and Kaiser, W. J. (Academic Press, Boston, 1993), chapter 4.Google Scholar
13. Feenstra, R. M. in 21st International Conference on the Physics of Semiconductors, eds. Jiang, Ping and Zheng, Hou-Zhi (World Scientific, Singapore, 1992), p. 357.Google Scholar
14. Feenstra, R. M. and Lutz, M. A. J. Vac. Sci. Technol. B 9, 716 (1991).Google Scholar
15. Feenstra, R. M. and Stroscio, J. A. J. Vac. Sci. Technol. B 5, 923 (1987).Google Scholar
16. Warren, A. C. Woodall, J. M. Kirchner, P. D. Yin, X., Pollack, F., Melloch, M. R. Otsuka, N., and Mahalingam, K., Phys. Rev. B 46, 4617 (1992).CrossRefGoogle Scholar
17. Look, D. C. J. Appl. Phys. 70, 3148 (1991).CrossRefGoogle Scholar
18. Wang, J., Arias, T. A. Joannopoulos, J. D. Turner, G. W. and Alerhand, O. L., Phys. Rev. B 47, 10326 (1993).Google Scholar
19. Weber, E. R., Ennen, H., Kaufman, U., Windscheif, J., Schneider, J., and Wosinski, T., J. Appl. Phys. 53, 6140 (1982).Google Scholar
20. Katzer, D. S., Gammon, D., and Shanabrook, B. V., J. Vac. Sci. Technol. B 10, 800 (1992).CrossRefGoogle Scholar
21. As shown in Ref. 15, tip-induced band bending effects are greatly reduced due to tunneling through the space charge region of the semiconductor. For bulk spectral features (band and subband onsets), corrections to the observed energies are thus less than 0.1-0.2 eV for doping levels near 1018 cm-3. Corrections to surface state related features can, in certain cases, be larger.Google Scholar
22. Cartensen, H., Manzke, R., Schafer, I., and Skibowski, M., in Proc. 18th Int. Conf. on the Physics of Semiconductors, ed. Engström, O. (World Scientific, Singapore, 1987), p. 125.Google Scholar
23. Ting, D. Z.-Y., Yu, E. T. and McGill, T. C. Phys. Rev. B 45, 3583 (1992).Google Scholar
24. Meyer, B. K. Hofmann, D. M. Niklas, J. R. and Spaeth, J.-M., Phys. Rev. B 36, 1332 (1987).Google Scholar
25. Nissen, M. K. Villemaire, A., and Thewalt, M. L. W. Phys. Rev. Lett. 67, 112 (1991).Google Scholar
26. Feenstra, R. M. Lutz, M. A. A. Vaterlaus, Woodall, J. M. and Melloch, M. R. to be published.Google Scholar