Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T07:33:08.317Z Has data issue: false hasContentIssue false

Critical Behavior in the Ultrasonic Properties of Suspensions

Published online by Cambridge University Press:  10 February 2011

R. Esquivel-Sirvent
Affiliation:
CMSS Program, Ohio University, Athens Ohio 45701 Department of Physics and Astronomy
D. H. Green
Affiliation:
Department of Geological Sciences.
Get access

Abstract

Velocity and attenuation measurements of compressional waves at 3 and 5 MHz are presented for suspensions made of 1μm size particles of kaolinite or glass beads in water or light oil. At a critical concentration of 40%, the attenuation shows a sharp peak in attenuation as well as a sudden change in velocity. This behavior is observed in all suspensions and is independent of frequency or particle geometry. The observed behavior is consistent, with the excess attenuation induced by the fluid-shearing between particles. This behavior is the first experimental evidence for the existance of the freezing point, predicted by computer simulations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Murray, C. A., and Grier, D. A., American Scientist 83, 238245 (1995).Google Scholar
[2] Paulin, S.E., and Ackerson, B.J., Phys. Rev. Lett. 64, 26632666 (1990).Google Scholar
[3] Murray, C. A., Sprenger, W.O., and Wenk, R. A., Phys.Rev. B 42, 688 (1990).Google Scholar
[4] Bartlett, P. and Van Megen, W. in Granular Matter: An Interdisciplinary Approach, ed. Mehta, Anita (Springer-Verlag, Berlin 1993) p. 195.Google Scholar
[5] Digby, P. J., J. Appl. Mech., 48, 803808 (1981).Google Scholar
[6] Marion, D., and Nur, A., Physica A 157, 575579 (1989).Google Scholar
[7] Blangy, J. P., Strandenes, Nur, S., A., Geophysics, 58, 344356 (1993).Google Scholar
[8] Greenwood, M. S., Mai, Josef L., and Good, Morris S., J. Acoust. Soc. Am. 94, 908916 (1993).Google Scholar
[9] Cooper, D. W., Phys. Rev. A, 38, 522524 (1988).Google Scholar
[10] Torquato, S., Phys. Rev. Lett., 74, 21562159 (1995).Google Scholar
[11] Esquivel-Sirvent, R., Yun, S.S. and Stumpf, F.B., J. Acoust. Soc. Am. 95, 557558 (1994).Google Scholar
[12] Sheng, P., Introduction to Wave Scattering, Localization and Mesoscopic Phenomena, (Academic Press, San Diego, California 1995) p. 49113.Google Scholar
[13] Esquivel-Sirvent, R., Green, D. H., Yun, S.S., Appl. Phys. Lett. 67, 30873089 (1995).Google Scholar
[14] Derken, J. S. and Kytoma, H. K., Proceedings of the 1994 ASME Fluids Engineering Division Summer Meeting, 189 (ASME, New York 1994) p. 7581.Google Scholar
[15] Atkinson, C. M. and Kytoma, H. K., Int. Journal of Multiphase Flows, 18 577592 (1993).Google Scholar
[16] Landau, L. D. and Lifshitz, E. M., Fluid Mechanics, (Pergammon Press, New York 1984) p. 89.Google Scholar
[17] Wood, A. B., A textbook of Sound (G. Bell & Sons, London 1930).Google Scholar
[18] Berryman, J. G., J. Acoust. Soc. Am. 68, 18091819 (1980).Google Scholar
[19] Harker, A. H., and Temple, J. A. G., J. Phys. D: Appl. Phys. 21 15761588 (1988).Google Scholar