Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-25T00:43:22.276Z Has data issue: false hasContentIssue false

Criteria For Progressive Interfacial Debonding With Friction In Fiber-Reinforced Ceramic Composites

Published online by Cambridge University Press:  15 February 2011

Chun-Hway Hsueh*
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
Get access

Abstract

Criteria for progressive debonding at the fiber/matrix interface with friction along the debonded interface are considered for fiber-reinforced ceramic composites. The energy-based criterion is adopted to analyze the debond length, the crack-opening displacement, and the displacement of the composite due to interfacial debonding. The analytical solutions are identical to those obtained from the mismatch-strain criterion, in which interfacial debonding is assumed to occur when the mismatch in the axial strain between the fiber and the matrix reaches a critical value. Furthermore, the mismatch-strain criterion is found to bear the same physical meaning as the strength-based criterion.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Evans, A. G. and McMeeking, R. M., Acta Metall., 34, 24352441 (1986).Google Scholar
2. Becher, P. F., Hsueh, C. H., Angelini, P. and Tiegs, T. N., J. Am. Ceram. Soc., 71, 10501061 (1988).Google Scholar
3. Gurney, C. and Hunt, J., Proc. Roy. Soc. Lond., A299, 508524 (1967).Google Scholar
4. Gao, Y. C., Mai, Y. W. and Cotterell, B., J. Appl. Math. and Phys. (ZAMP), 39, 550572 (1988).Google Scholar
5. Hutchinson, J. W. and Jensen, H. M., Mech. Materials, 9, 139163 (1990)Google Scholar
6. Hsueh, C. H., Mater. Sci. and Eng., A159, 6572 (1992).Google Scholar
7. Lawrence, P., J. Mater. Sci., 7, 16 (1972).Google Scholar
8. Takaku, A. and Arridge, R. G. C., J. Phys. D: Appl. Phys., 6, 20382047 (1973).Google Scholar
9. Hsueh, C. H., Mater. Sci. and Eng., A123, 111 (1990).Google Scholar
10. Nair, S. V., J. Am. Ceram. Soc., 73, 28392847 (1990).Google Scholar
11. Budiansky, B., Evans, A. G., and Hutchinson, J. W., Int. J. Solids Structures, 32, 315328 (1995).Google Scholar
12. Shafry, N., Brandon, D. G. and Terasaki, M., Euro-Ceramics, 3, 3.453457 (1989).Google Scholar
13. Hsueh, C. H., J. Mater. Sci., 30, 17811789 (1995).Google Scholar
14. Hsueh, C. H., submitted to Acta Metall. Mater.Google Scholar
15. Marshall, D. B., Cox, B. N., and Evans, A. G., Acta Metall., 33, 2013 (1985).Google Scholar
16. Aveston, J., Cooper, G. A., and Kelly, A., “The Properties of Fibre Composites,” pp. 1526, Conference Proceedings, National Physical Laboratory, Guildford, IPC Science and Technology Press Ltd., (1971).Google Scholar
17. McCartney, L. N., Proc. R. Soc. Lond., A409, 329350 (1987).Google Scholar
18. Kim, J. K., Baillie, C., and Mai, Y. W., J. Mater. Sci., 27, 31433154 (1992).Google Scholar