Hostname: page-component-788cddb947-55tpx Total loading time: 0 Render date: 2024-10-14T04:13:36.680Z Has data issue: false hasContentIssue false

Creation of Electron-Hole Pairs in Inorganic Scintillators

Published online by Cambridge University Press:  21 February 2011

Piotr A. Rodnyi
Affiliation:
St.Petersburg State Technical University, Department of Experimental Physics, St. Petersburg, Russia Delft University of Technology, Faculty of Applied Physics, Delft, The, Netherlands
Pieter Dorenbos
Affiliation:
Delft University of Technology, Faculty of Applied Physics, Delft, The, Netherlands
Carel W.E. Van Euk
Affiliation:
Delft University of Technology, Faculty of Applied Physics, Delft, The, Netherlands
Get access

Abstract

Models are discussed of the first stage of the scintillation mechanism in an inorganic scintillator: the primary interaction and the thermalization process. The model predictionsare compared with experimental results, an extension of the theory is made and conclusions are drawn concerning the best description of the first stage.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

This study has been supported by The Netherlands Technology Foundation (STW)

References

REFERENCES

1. Aluker, E.D. D.Yu.Lusis andChernov, S.A. Electronic Excitations and Radioluminescence of Alkali-Halide Crystals (“Zinatne”, Riga, 1979) p. 251 (in Russian)Google Scholar
2. Shockley, W. Solid-State Electronics, 2, 35 (1961).10.1016/0038-1101(61)90054-5Google Scholar
3. Klein, C.A. J.Appl. Phys. 39, 2029 (1968).10.1063/1.1656484Google Scholar
4. Roosbroeck, W. van, Phys. Rev. A139, 1702 (1965).10.1103/PhysRev.139.A1702Google Scholar
5. Rothwarf, A. J.Appl. Phys. 44, 752 (1973).10.1063/1.1662257Google Scholar
6. Robbins, D.F. J. Electrochem. Soc. 127, 2694 (1980).10.1149/1.2129574Google Scholar
7. Kobayashi, T. Appl. Phys. Lett. 21, 150 (1972).10.1063/1.1654321Google Scholar
8. Alig, R.C. andBloom, S. Phys. Rev. Lett. 35, 1522 (1975).10.1103/PhysRevLett.35.1522Google Scholar
9. Elango, M.A. Kikas, A. Nommiste, E. Pruuhnann, J. andSaar, A. Phys. Stat. Solidi (b), 114, 487 (1982).10.1002/pssb.2221140223Google Scholar
10. Elango, M.A. Elementary Inelastic Radiation Induced Processes (Hilger, Bristol, 1991).Google Scholar
11. , Hauser, J. Appl. Phys. 37, 507 (1966).Google Scholar
12. Yamakawa, K.A. Phys. Rev. 82, 522 (1951).Google Scholar
13. Brown, F.C. Phys.Rev. 97, 355 (1955).10.1103/PhysRev.97.355Google Scholar
14. Knoll, G.F. Radiation Detection and Measurement (John Wiley and Sons, 1989).Google Scholar
15. Kingsley, J.D. andLudwig, G.W. J. Electrochem. Soc. 117, 351 (1970).10.1149/1.2407510Google Scholar
16. Watts, H.V. Reiffel, L. andOestreich, M.D. in Nuclear Electronics (IAEA, Vienna,1962) pp.314.Google Scholar
17. Shah, K.S. Lund, J.C. Olschner, F. Moy, L. andScuillante, M.R. Conference Report (1993).Google Scholar
18. Lehman, W. J.Electrochem. Soc. 118, 1164 (1971).Google Scholar
19. Pines, D. Elementary Excitations in Solids, (W.A. Bejamin INC., New-York - Amsterdam, 1963).Google Scholar
20. Hiraoka, K. andHamiil, W. J.Chem.Phys. 57, 3881, (1972).10.1063/1.1678858Google Scholar
21. Soschin, N.P. Amiran, A.M. Raskin, B.Ya., Soldatov, V.M. Prikhod'ko, V.V., Izv.Akad.Nauk SSSR, 38, 1153 (1974).Google Scholar
22. Lappe, F. J.Phys.Chem., Solids, 20, 135 (1961).10.1016/0022-3697(61)90001-4Google Scholar
23. Melcher, C.L. Schweitzer, J.S. Nucl. Instr. and Meth., A314, 212 (1992).10.1016/0168-9002(92)90517-8Google Scholar
24. Sparks, M. Mills, D.L. Warren, W. et al. , Phys. Rev. B., 24, 3519 (1987).10.1103/PhysRevB.24.3519Google Scholar
25. Lempicki, A. Woitowicz, A.J. andBerman, E. Nucl. Instr. and Meth., A333, 304 (1993).10.1016/0168-9002(93)91170-RGoogle Scholar