Skip to main content Accessibility help

The Creation and Annealing of Heavy Ion Damage in Silicon

  • L. M. Howe (a1) and M. H. Rainville (a1)


High resolution transmission electron microscopy techniques have been used to obtain information on the contrast, spatial distribution, size and annealing behaviour of the damaged regions produced within individual collision cascades by heavy ion (As, Sb and Bi) bombardment (10–120 KeV) of silicon with 1.0 × 1011 – 6.0 × 1011 ions cm−2. The fraction of the theoretical cascade volume occupied by a heavily damaged region steadily increased as the average deposited energy density within the cascade increased. At high energy densities, the visible damage produced in the main cascade consisted of a single, isolated damaged region. With decreasing values of (i.e. increasing ion implant energies), there was an increasing tendency for multiple damaged regions to be produced within the main cascade.



Hide All
[1] Mitchell, J.B., Davies, J.A., Howe, L.M., Walker, R.S., Winterbon, K.B., Foti, G. and Moore, J.A., in: Ion Implantation in Semiconductors (Plenum, New York, 1975) p. 493.
[2] Davies, J.A., Foti, G., Howe, L.M., Mitchell, J.B. and Winterbon, K.B., Phys. Rev. Lett. 34 1441 (1975).
[3] Walker, R.S. and Thompson, D.A., Nucl. Instr. and Meth. 135 489 (1976).
[4] Thompson, D.A., Walker, R.S., and Davies, J.A., Radiat. Eff. 32 135 (1977).
[5] Thompson, D.A. and Walker, R.S., Radiat. Eff. 36 91 (1978).
[6] Thompson, D.A. Golanski, A., Haugen, H.K., Howe, L.M. and Davies, J.A., Radiat. Eff. Lett. 50 125 (1980).
[7] Kalitzova, M., Foti, G., Bertolotti, M., Marinelli, M., Vitali, G. and Zammit, U., Radiat. Eff. 69 191 (1983).
[8] Parsons, J.R., Philos. Mag. 12 1159 (1965).
[9] Parsons, J.R. and Hoelke, C.W., in: Radiation Effects in Semiconductors (Plenum, New York, 1968) p. 339; IEEE Trans. Nucl. Sci. NS-16, (6) 37 (1969).
[10] Howe, L.M., Rainville, M.H., Haugen, H.K. and Thompson, D.A., Nucl. Instr. and Meth. 170 419 (1980).
[11] Ruault, M.O. and Jäger, W., J. Microsc. 118 67 (1980).
[12] Howe, L.M. and Rainville, M.H., Nucl. Instr. and Meth. 182/183 143 (1981).
[13] Howe, L.M. and Rainville, M.H., Proc. Mic. Soc. Canada 10 64 (1983).
[14] Ruault, M.O., Chaumont, J. and Bernas, H., IEEE Trans. Nucl. Sci. NS–30 1746 (1983).
[15] Ruault, M.O., Chaumont, J. and Bernas, H., Nucl. Instr. and Meth. 209/210 351 (1983).
[16] Ruault, M.O., Chaumont, J., Penisson, J.M. and Bourret, A., Philos. Mag. A50 667 (1984).
[17] Narayan, J., Fathy, D., Oen, O.S. and Holland, O.W., Mater. Lett. 2 211 (1984).
[18] Kalitzova, M.G., Karpuzov, D.J. and Pashov, N.K., Philos. Mag. A51 373 (1985).
[19] Howe, L.M. and Rainville, M.H., Nucl. Instr. Meth. Physics Research B19/20, 61 (1987).
[20] Sigmund, P., Appl. Phys. Lett. 25 169 (1974).
[21] Winterbon, K.B., Sigmund, P. and Sanders, J.B., Vidensk, K. Dan, Selsk. Mat. Fys. Medd. 37 14 (1970).
[22] Winterbon, K.B., Ion Implantation Range and Energy Deposition Distributions, Vol.2 (Plenum, New York, 1975).
[23] Walker, R.S. and Thompson, D.A., Radiat. Eff. 37 113 (1978).
[24] Howe, L.M. and Rainville, M.H., in preparation for publication.
[25] Mayer, J.W., Eriksson, L., Picraux, S.T. and Davies, J.A., Can. J. Phys. 46 663 (1968).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed