Skip to main content Accessibility help

Coverage Dependence of CO Surface Diffusion on Pt Nanoparticles - an EC-NMR Study

  • Andrzej Wieckowski (a1), Takeshi Kobayashi (a2), Panakkattu K Babu (a3), Jong Ho Chung (a4) and Eric Oldfield (a5)...


We have studied the effects of CO coverage on surface diffusion rates of CO adsorbed on nanoparticle Pt catalysts in sulfuric acid media by using 13C electrochemical nuclear magnetic resonance spectroscopy (EC-NMR) in the temperature range 253 - 293 K. For CO coverage from θ = 1.0 to 0.36, the diffusion coefficients follow Arrhenius behavior and both activation energy (E d) and pre-exponential factor (D co) show CO coverage dependence. Ed increases from 6.0 to 8.4 kcal/mol and DCO varies from 1.1 X 10-8 to 3.7 X 10-6 cm2/s when the coverage is increased from θ = 0.36 to θ = 1.0. On the Pt catalyst surface at partial CO coverage, our data strongly support the free site hopping model of adsorbed CO as the major surface diffusion mechanism, unlike the situation found with a fully CO covered surface where CO exchange between different surface sites is believed to be the major diffusion mechanism. Our results also indicate that the contributions of lateral repulsive interactions exert a stronger influence on the diffusive motion than does the nature of the surface structure. When the diffusion coefficient was estimated from CO stripping measurements by using an electrochemical modeling protocol, the estimated diffusion coefficients were a few orders of magnitude larger than those obtained from the EC-NMR experiments. Overall these results are important for improving our understanding of electrochemical surface dynamics of molecules at interfaces, and may help facilitate better control of fuel cell reactions where the presence of surface CO plays a crucial role in controlling the reaction rates.



Hide All
1 Tong, Y. Y., Oldfield, E., and Wieckowski, A., Faraday Discussions 121, 323 (2002).
2 Poelsema, B., Verheij, L. K., and Comsa, G., Phys. Rev. Lett. 49 (23), 1731 (1982).
3 Reuttrobey, J. E., Doren, D. J., Chabal, Y. J., and Christman, S. B., Phys. Rev. Lett. 61 (24), 2778 (1988); J. E. Reuttrobey, D. J. Doren, Y. J. Chabal, and S. B. Christman, J. Chem. Phys. 93 (12), 9113 (1990); A. Vonoertzen, H. H. Rotermund, and S. Nettesheim, Surf. Sci. 311 (3), 322 (1994).
4 Ma, J. W., Xiao, X. D., DiNardo, N. J., and Loy, M. M. T., Phys. Rev. B 58 (8), 4977 (1998).
5 Xiao, X.-D., Xie, Y., Jakobsen, C., and Shen, Y. R., Phys. Rev. B 56, 1252912538 (1997).
6 Becerra, L. R., Klug, C. A., Slichter, C. P., and Sinfelt, J. H., J. Phys. Chem. 97 (46), 12014 (1993).
7 Tong, Y. Y., Rice, C., Wieckowski, A., and Oldfield, E., J. Am. Chem. Soc. 122 (6), 1123 (2000); J. B. Day, P. A. Vuissoz, E. Oldfield, A. Wieckowski, and J. P. Ansermet, J. Am. Chem. Soc. 118 (51), 13046 (1996).
8 Tong, Y. Y., Kim, H. S., Babu, P. K., Waszczuk, P., Wieckowski, A., and Oldfield, E., J. Am. Chem. Soc. 124 (3), 468 (2002).
9 Babu, P. K., Kim, H. S., Chung, J. H., Oldfield, E., and Wieckowski, A., J. Phys. Chem. B 108 (52), 20228 (2004).
10 Kobayashi, T., Babu, P. K. Gancs, L., Chung, J. H., Oldfield, E., and Wieckowski, A., J. Am. Chem. Soc. 127, 14164 (2005).
11 Cherstiouk, O. V., Simonov, P. A., Zaikovskii, V. I., and Savinova, E. R., J. Electroanal. Chem. 554, 241 (2003).
12 Yeo, Y. Y., Wartnaby, C. E., and King, D. A., Science 268 (5218), 1731 (1995).
13 Chang, S. -C., Roth, J. D., Ho, Y., and Weaver, M. J., Journal of Electron Spectroscopy and Related Phenomena, 54–55, 1185 (1990); S. G. Podkolzin, J. Shen, J. J. de Pablo, and J. A. Dumesic, J. Phys. Chem. B 104, 4169 (2000).
14 Waszczuk, P., Solla-Gullon, J., Kim, H. S., Tong, Y. Y., Montiel, V., Aldaz, A., and Wieckowski, A., J. Catalysis 203, 1 (2001).
15 Lu, C., Rice, C., Masel, R. I., Babu, P. K., Waszczuk, P., Kim, H. S., Oldfield, E., and Wieckowski, A., J. Phys. Chem. B 106, 9581 (2002).
16 Tong, Y. Y., Oldfield, E., and Wieckowski, A., Analytical Chemistry 70 (15), A 518 (1998).
17 Day, J., Vuissoz, P. -A., Oldfield, E., Wieckowski, A., and Ansermet, J. -P., J. Am. Chem. Soc. 118, 13046 (1996).
18 Maillard, F., Eikerling, M., Cherstiouk, O. V., Schreier, S., Savinova, E., and Stimming, U., Faraday Discussions 125, 357 (2004).
19 Lin, T. S., Lu, H. J., and Gomer, R., Surf. Sci. 234 (3), 251 (1990).
20 Jennison, D. R., Schultz, P. A., and Sears, M. P., Phys. Rev. Lett. 77, 48284831 (1996).
21 Kizhakevariam, N., Jiang, X., and Weaver, M. J., J. Chem. Phys. 100, 6750 (1994).
22 Steininger, H., Lehwald, S., and Ibach, H., Surf. Sci. 123, 264 (1982); B. E. Hayden, K. Kretzschmar, A. M. Bradshaw, and R. G. Greenler, Surf. Sci. 149, 394 (1985).
23 Villegas, I. and Weaver, M. J., J. Chem. Phys. 101, 1648 (1994); N. M. Markovic, B. N. Grgur, C. A. Lucas, and P. N. Ross, J. Phys. Chem. B 103, 487 (1999).
24 Park, S., Wasileski, S. A., and Weaver, M. J., J. Phys. Chem. B 105, 9719 (2001).
25 Curulla, D., Clotet, A., Ricart, J. M., and Illas, F., J. Phys. Chem. B 103, 5246 (1999).
26 Lebedeva, N. P., Rodes, A., Feliu, J. M., Koper, M. T. M., and van Santen, R. A., J. Phys. Chem. B 106, 9863 (2002); P. Lazar, H. Schollmeyer, and H. Riegler, Phys. Rev. Lett. 94, 116101 (2005).
27 Gomer, R., Rep. Prog. Phys. 53, 917 (1990).
28 Hopstaken, M. J. P. and Niemantsverdriet, J. W., J. Chem. Phys. 113, 5457 (2000).
29 Vuissoz, P. A., Ansermet, J. P., and Wieckowski, A., Phys. Rev. Lett. 83 (12), 2457 (1999).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed