Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-16T07:46:27.097Z Has data issue: false hasContentIssue false

Corrosion Engineering in Device Packaging

Published online by Cambridge University Press:  25 February 2011

R.M. Latanision
Affiliation:
The H.H. Uhlig Corrosion Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
P.V. Nagarkar
Affiliation:
The H.H. Uhlig Corrosion Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
M. Kloppers
Affiliation:
The H.H. Uhlig Corrosion Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
F. Bellucci
Affiliation:
The H.H. Uhlig Corrosion Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA University of Naples, Naples, ITALY
Get access

Abstract

Corrosion processes affecting electronic devices are chemical and electrochemical in nature. Ionic contaminants, applied voltages, and relative humidity accelerate failure of integrated circuits. Although packaging materials often reduce the corrosion rate of the underlying circuitry, a complete understanding of the mechanism for the basic processes taking place at the coating/metallic circuitry interface is missing.

In this paper the role played by water and ionic contaminants on coated metallic substrates is considered. Transport properties of free standing polyimide membranes have been examined. The corrosion behavior of polyimide/Fe and polyimide/Al systems has been investigated using electrochemical polarization, and a.c. impedance measurements. For the AI/PI system underfilm degradation has been examined using x-ray photoelectron spectroscopy (XPS). Results indicate that the flux of ions is very small compared to that of oxygen and water and yet metallic failure can be ascribed mainly to the transport of ions across the packaging material. XPS showed that considerable degradation takes place at the metal/polyimide interface prior to visible corrosion or delamination.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. White, H.S., in Electronic Packasine and Corrosion in Microelectronics, edited by. Nicholson, M.E., (ASM Intl., Ohio, 1987), p. 33.Google Scholar
2. Ju, Jeh-Beck, and Smyre, W.H., in Electronic Packaging and Corrosion in Microelectronics, edited by.Nicholson, M.E., (ASM Intl., Ohio, 1987), p. 119.Google Scholar
3. Wilson, A.M., Thin Solid Films, B1, 145, (1981).Google Scholar
4. Sinclair, J. D., J. Electrochem. Soc., 135, 89C, (1988).Google Scholar
5. , Comizzoli, Frankenthal, R.P, Milner, P.C. and Sinclair, J.D., Science, 234, 340, (1986).Google Scholar
6. Frankenthal, R. P. and Becker, W. H., J. Electrochem. Soc., 126, 1718, (1979).Google Scholar
7. Howard, R.T., in, Electronic Packaging and Corrosion in Microelectronics, edited by. Nicholson, M.E., (ASM Intl., Ohio, 1987), p. 131.Google Scholar
8. Polvimides. Synthesis. Characterization and Applications, edited by Mittal, K. L., Vol. 1 and 2, Plenum Press, New York, (1984).Google Scholar
9. Milner, P. in Agenda For Advances Electrochemical Corrosion Science and Technology, Publication NMAB 438-2, (National Academy Press, Washington, DC, 1987), p.67.Google Scholar
10. Yaseen, M. and Funke, W., J. Oil Col. Chem. Assoc., 1, 284, (1978).Google Scholar
11. Sykes, G.F. and Clair, A.K. St., J. Appl. Poly. Sci., 32, 3725, (1986).Google Scholar
12. Felder, R.M., Patton, C.J. and Koros, W.J., J. Polym. Sci., Polym. Phys. Ed., 12, 1995, (1981).Google Scholar
13. Koros, W.J., Wang, J. and Felder, R.M., J. Appl. Polym. Sci., 26, 2805, (1981).Google Scholar
14. Sacher, E. and Susko, J.R., J. Appl. Polym. Sci., 23, 2355, (1979).Google Scholar
15. Sacher, E. and Susko, J.R., J. Appl. Polym. Sci., 26, 679, (1981).Google Scholar
16. Yang, D.K., Koros, W.J., Hopfenberg, H.B. and Stannett, V.T., J. Appl. Polym. Sci., 30, 1035, (1985).Google Scholar
17. Yang, D.K., Koros, W.J., Hopfenberg, H.B. and Stannett, V.T., J. Appl. Polym. Sci., 31, 1619, (1986).Google Scholar
18. Sinclair, J.D., in, Electronic Packaging and Corrosion in Microelectronics, edited by. Nicholson, M.E., (ASM Intl., Ohio, 1987), p. 145.Google Scholar
19. Liu, B.Y.H., in, Electronic Packaging and Corrosion in Microelectronics, edited by. Nicholson, M.E., (ASM Intl., Ohio, 1987), p. 155.Google Scholar
20. Bonus, J., in, Electronic Packaging and Corrosion in Microelectronics, edited by. Nicholson, M.E., (ASM Intl., Ohio, 1987), p. 161.Google Scholar
21. Adams, M.D., Bowers, D.F., and Santner, J.S., in, Electronic Packaging and Corrosion in Microelectronics. edited by. Nicholson, M.E., (ASM Intl., Ohio, 1987), p. 15.Google Scholar
22. Allen, M., Mehregany, M., Howe, R.T., and Senturia, S.D., Applied Physics Letters, 51 (4), 241, (1987).Google Scholar
23. Doane, L.M., Bruce, J.A., and Narechania, R.G., J. Electrochem. Soc., 135, 3155, (1988).Google Scholar
24. Bellucci, F., Khamis, E., Nagarkar, P.V., Searson, P.C., Schussler, A., Senturia, S.D. and Latanision, R.M., Proc.of an Intl. Symposium on, Corrosion Science and Engineering, eds., Rapp, R.A., Gokcen, N. A., Pourbaix, A., (CEBELCOR, Brussels, 1989), Vol.2, p.41.Google Scholar
25. Wormwell, F. and Brasher, D.M., J. Iron Steel Inst. 162,129, (1949).Google Scholar
26. Brasher, D.M. and Kingsburg, A.H., J. Appl. Chem., 4, 62, (1954).Google Scholar
27. Brasher, D.M. and Nurse, T.J., J. Appl. Chem, 2, 96, (1958).Google Scholar
28. Walter, G.W., Corr. Sci., 26, 27, (1986).Google Scholar
29. Nagarkar, P.V., Searson, P.C., Bellucci, F., Allen, M.G., Latanision, R.M., 39th Electronic Components Conference Proceedings, (IEEE, Houston, 1989), p. 160.Google Scholar