Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-10T09:59:56.660Z Has data issue: false hasContentIssue false

Correlations Between Medium Frequency Blocking Parameters and Microstructure in Low Conductivity Materials

Published online by Cambridge University Press:  10 February 2011

M. Kleitz
Affiliation:
Laboratoire d'Ionique et d'Electrochimie du Solide de renoble (INPG / CNRS) 38402 Saint Martin d'Hères, France
L. Dessemond
Affiliation:
Laboratoire d'Ionique et d'Electrochimie du Solide de renoble (INPG / CNRS) 38402 Saint Martin d'Hères, France
M. C. Steil
Affiliation:
Centre S.M.S., Laboratoire de Ceramiques Speciales Ecole des Mines de St Etienne 42023 Saint Etienne, France
F. Thevenot
Affiliation:
Centre S.M.S., Laboratoire de Ceramiques Speciales Ecole des Mines de St Etienne 42023 Saint Etienne, France
Get access

Abstract

Observations have been made by impedance spectroscopy of various microstructure-induced blocking effects in cubic zirconias and composites. Correlations have been established between shape parameters of the microstructure defects and specific parameters of the electric response, such as the blocking factor and frequency factor, in the medium frequency range.

Appropriate diagrams show the continuity and changes in the regimes of the microstructure evolutions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kleitz, M., Pescher, C. and Dessemond, L., Science and Technology of Zirconia V, (Technomic Publishing Co. Inc., Lancaster, Basel 1993), pp. 593608.Google Scholar
2. Dessemond, L. et Kleitz, M., J. Eur. Ceram. Soc. 9, 35 (1992).Google Scholar
3. Steil, M.C., Thevenot, F., Dessemond, L. and Kleitz, M. in Third Euro-Ceramics edited by Duran, P. and Fernandez, J.F. (Faenza Editrice, Ibenica S.L., Spain, 1993), pp. 271280.Google Scholar
4. Kleitz, M., Djurado, E., Robert, P.O., Steil, M.C. and Thevenot, F. in Electroceramics IV, edited by Vaser, R., Hoffmann, S., Bonnenberg, D. and Hoffmann, Ch. (Augustinus Buchhanlung, Aachen, Germany, 1994), pp. 725732.Google Scholar
5. Bauerle, J.E., J. Phys. Chem. Solids 30, 2657 (1961).Google Scholar
6. Dessemond, L., Thesis (Grenoble 1992).Google Scholar
7. Dessemond, L., Muccillo, R., Henault, M. and Kleitz, M., Appl. Phys. A 57, 57 (1993).Google Scholar
8. Kleitz, M., Dessemond, L. and Steil, M.C., Solid State Ionics 75, 107 (1995).Google Scholar
9. Schouler, E.J.L., Thesis (Grenoble 1979).Google Scholar
10. Kleitz, M., Steil, M.C. and Ranchin, J. 4 th Conference of the European Ceramic Society, Riccione (Italy, Oct.26 1995) - Abst # ELE-CN-LOI. Paper to be publ. in J. Eur. Ceram. Soc.Google Scholar
11. Chu, S.H. and Seitz, M.A., J. Sol. State Chem. 23, 297 (1978).Google Scholar
12. Van Dijk, T. and Burggraaf, A.K., Phys. Stat. Sol. (a) 63, 229 (1981).Google Scholar
13. Hughes, A.E. and Badwal, S.P.S., Solid State Ionics, 46, 265 (1991).Google Scholar
14. Maier, J., Mat. Res. Bull. 20, 383 (1985).Google Scholar
15. Bernard, H., Thesis (Grenoble 1980).Google Scholar