Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T20:32:01.088Z Has data issue: false hasContentIssue false

Correlation of the Location in Crystal Lattice and Optical Activity of the Yb Impurity in 111-V Compounds

Published online by Cambridge University Press:  21 February 2011

Adrian Kozanecki*
Affiliation:
Institute of Physics, Polish Academy of Sciences, Al.Lotnikow 32/46, 02-668 Warsaw, Poland
Get access

Abstract

Rutherford backscattering (RBS) and channeling measurements have been applied to study lattice location of the Yb atoms implanted into III-V compounds. It has been found that the Yb atoms locate in the lattice positions only in InP and its alloys with Ga and As, while in gallium compounds the substitutional fraction of Yb atoms could not be detected. The intra- 4f-shell luminescence of the Yb3+ ions in different crystalline matrices have been studied. It has been shown that the ability of efficient excitation of the atomic-like luminescence of Yb3+ ions is associated with their substitutiontl location in the lattice. The intracentre emission from substitutionally located Yb3+ ions may serve as a probe of the local alloy disorder in GaInP and InPAs crystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kimerling, L.C., MRS Bull. 16, 42 (1991).Google Scholar
2. Hayshi, I., in Solid State Devices and Materials. Extended Abstracts of the 1992 Intern. Conf.Solid State Dev. Mat..Tsukuba 1992. (Business Centre for Academic Societes, Japan, Tokyo 1992), p. 10.Google Scholar
3. Favennec, P.N., Haridon, H.L', Moutonnet, D., Salvi, M., and Gauneau, M., Jap.J.Appl.Phys. 29, L524 (1990).Google Scholar
4. Adler, D.L., Jacobson, D.C., Eaglesham, D.J., Marcus, M.A., JBenton, .L., Poate, J.M., and Citrin, P.H., Appl.Phys.Lett. 61, 2181 (1992).Google Scholar
5. Villars, P., and Calvert, L.D., in Pearson's Handbook of Crystallographic Data for Intermetallic Phases, American Society of Metals, Metal Park, Ohio (1985).Google Scholar
6. Takahei, K., Taguchi, A., Nakagome, H., Uwai, K., and Whitney, P.S., J.Appl.Phys. 66,4941 (1989).Google Scholar
7. Thonke, K., Pressel, K., Bohnert, G., Stapor, A., Weber, J., Moser, M., Molassioti, A., Hangleiter, A., and Scholz, F., Semicond. Sci. Technol. 5, 1124 (1990).Google Scholar
8. Kozanecki, A., and Groetzschel, R., J.Appl.Phys. 64, 3315 (1988).Google Scholar
9. Kozanecki, A., and Groetzschel, R., J.Appl.Phys. 68, 517 (1990).Google Scholar
10. Ennen, H., Kaufmann, U., Pomrenke, G., Schneider, J., Windscheiff, J., Axmann, A., J.Cryst.Growth 64, 165 (1983).Google Scholar
11. Kozanecki, A., Kalinski, Z., Raczynska, J., and Langer, J.M., J.Appl.Phys. 66, 3202 (1990).Google Scholar
12. Mikkelsen, J.C. Jr., and Boyce, J.B., Phys.Rev. B28, 7130 (1983).Google Scholar
13. Masterov, V.F., Romanov, V.V., and Shtelmakh, K.F., Sov.Phys.Solid State 25, 824 (1983).Google Scholar
14. Taguchi, A., Nakagome, H., and Takahei, K., J.Appl.Phys. 68, 3390 (1990).Google Scholar
15. Aszodi, G., Weber, J., Uhleihn, Ch., Pu-Lin, L., Ennen, H., Kaufmann, U., Schneider, J., and Windscheif, J., Phys.Rev. B31, 7767 (1985).Google Scholar