Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T20:57:09.266Z Has data issue: false hasContentIssue false

Correlation Between the Structure, Energy, and Local Elastic Properties of Grain Boundaries in Metals

Published online by Cambridge University Press:  28 February 2011

D. Wolf
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
M. Kluge
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
J. Lutsko
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
Get access

Abstract

The zero-temperature energies and equilibrium volume expansions of point-defect free asymmetrical grain boundaries (GBs) involving the four densest planes in fcc bicrystals (with some higher-index plane on the other side of the interface) have been determined using an embedded-atom-method potential fitted to Au. It is found that the two asymmetrical tilt GBs at the endpoints of the related GB energy vs. twist misorientation curves give rise to pronounced energy cusps. As for symmetrical GBs, a practically linear relationship between the GB energy and equilibrium volume expansion is observed. The volume expansion and the destruction of the perfectcrystal stacking at the GB are shown to cause a pronounced local decrease in the resistance towards shear parallel to the GB plane.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Daw, M. S. and Baskes, M. I., Phys. Rev. Lett. 50, 1285 (1983).Google Scholar
2. Finnis, M. W. and Sinclair, J. E., Phil. Mag. A 50, 45 (1984).Google Scholar
3. Seeger, A. and Schottky, G., Acta Metall. 7, 495 (1959).CrossRefGoogle Scholar
4. Wolf, D., J. Phys. Colloque C4 46, C4197 (1985).Google Scholar
5. Wolf, D. and Lutsko, J., Acta Metall. (submitted).Google Scholar
6. Brandon, D. G., Ralph, B., Ranganathan, S., and Wald, M. S., Acta Metall. 12, 813 (1964).Google Scholar
7. Bollman, W., Crystal Defects and Crystalline Interfaces, Springer Verlag, New York, 1970.Google Scholar
8. Wolf, D., Acta Metall. 32, 245 (1984) and Acta Metall. 32, 735 (1984).Google Scholar
9. Wolf, D., Physica 131B, 53 (1985).Google Scholar
10. Wolf, D. in “Computer Simulation in Materials Science,” (edited by Arsenault, R. J., Beeler, J. R. and Esterling, D. M.), American Society for Metals, 1987, Metals Park, Ohio, p. 111.Google Scholar
11. Wolf, D., Acta Metall. (to be published).Google Scholar
12. Read, W. T. and Shockley, W., Phys. Rev. 78, 275 (1950).Google Scholar
13. Merkle, K. L., Reddy, J. F., and Wiley, C. L., Ultramicroscopy 18, 281 (1985).Google Scholar
14. Merkle, K. L. and Smith, D. J., Ultramicroscopy 22, 57 (1987), and Phys. Rev. Lett. 39, 2887 (1987).Google Scholar
15. Carter, C. B., Acta Metall. 36, 2753 (1988).Google Scholar
16. Rohle, M., in Proc. Symp. on “Interfacial Phenomena in Composites,” Newport, RI, June 1988 (to be published in Mat. Sci. Eng.).Google Scholar
17. Herrmann, G., Gleiter, H., and Baro, G., Acta Metall. 24, 353 (1976).Google Scholar
18. Maurer, R., Acta Metall. 35, 2557 (1987).Google Scholar
19. Balluffi, R. W. and Maurer, R., Scripta Metall. 22, 709 (1988).Google Scholar
20. Lutsko, J., J. Appl. Phys. 64, 1152 (1988).Google Scholar
21. Gleiter, H., J. Phys. Colloque C4 46, C4393 (1985).Google Scholar