Skip to main content Accessibility help
×
Home

Correlation Between Quantum Nanocrystal Particle Size and Photoluminescence Using Raman Scattering

  • E. W. Forsvthe (a1), E. A. Whittaker (a1), F.H. Pollak (a2), B. S. Sywe (a3), G. S. Tompa (a4), B. A. Khan (a5), J. Khurgin (a6), H.W.H. Lee (a7), F. Adar (a8) and H. Schaffer (a8)...

Abstract

The PL (photoluminescence) and EL (electroluminescence) demonstrated for porous silicon and silicon rich SiO2 films have provided exciting opportunities for the integration of optoelectronics and Si digital electronics. Recent work has suggested that the porous silicon luminescence results from either quantum size or surface state effects. In this report, we review PL demonstrated in the visible spectral range from quantum nanocrystals (QNC) formed from Si embedded in an SiO2 matrix. We used Raman scattering to estimate the QNC particle size and correlated the shift in the luminescence spectra to the observed change in the Raman spectra. The PL spectrum peak shifted from 7000 to 8000 Å as the average particle size increased from ∼50 to 70 Å, measured from Raman scattering. Further, High Resolution Transmission Electron Microscopy, HRTEM, and X-ray Diffraction, XRD, measurements confirmed the particle size range. PL lifetime measurements and excitation intensity studies are also presented. The stable nature of the QNC embedded in an insulating or semiconducting matrix offers further advances towards the integration of optoelectronics with Si devices.

Copyright

References

Hide All
1 Canham, L.T., Appl. Phys. Lett., 57, 10, 1046 (1990)
2 Steiner, P., Kozlowski, F., Sandmair, H., Lang, W., MRS Symp. Proc., 283, 343 (1993)
3 Kim, S.I., Hart, T., Khan, B.K., Tompa, G.S., Lu, Y., Sun, G., and Khurgin, J., MRS Proc., 326, 591 (1994)
4 Shcheglov, K.V., Yang, C.M., Vahala, K.J., and Atwater, H.A., submitted to Appl. Phys Lett
5 Tompa, G.S., Morton, D., Sywe, B.S., Lu, Y., Forsythe, E.W., Ott, J., Khurgin, J., Khan, B.A., Symp. F Proc. MRS (1994)
6 Robbins, D.J., DiMaria, D.J., Falcony, C., and Dong, D.W., J. Appl. Phys., 54, 4553 (1983)
7 DiMaria, D.J., Kirtley, J.R., E., J Pakulis, Dong, D.W, Kuan, T.S., Pesavento, F.L., Theis, T.N., and J, A Cutro, J. Appl. Phys., 56 (2), 401 (1984)
8 Toriumi, A., Yoshimi, M., Iwase, M., Akiyama, Y., Taniguchi, K., IEEE Trans, on Electronic Dev., ED-34, 7, 1501(1987)
9 Fauchet, P.M., Tsybeskov, L., Vandyshev, Ju. V., Dubois, A., and Peng, C., SPIE, 2141, 155 (1994)
10 Khurgin, J., Forsythe, E.W., Kim, S.I., Sywe, B.S., Khan, B.A., Tompa, G.S., Sym F Proc.MRS (1994)
11 Zhan, X., Schoenfeld, O., Kusano, J., Aoyagi, Y., Sugano, T., Jpn. J. Appl. Phys., 33, P2, L899 (1994)
12 Takagahara, T. and Takeda, K., Phys. Rev. B, 46, 15578 (1992)
13 Swye, B.S., Gorla, C., Lu, Y., Mayo, W., Tompa, G., Forsythe, E., Ott, J., Smith, D., Khan, B., Khurgin, J., Kim, M., Lee, H., Lareau, R., Symposium F Proceeds MRS (1994)
14 Temple, P.A. and Hathaway, CE., Phys. Rev. B, 7 (8), 3685 (1973)
15 Fauchet, P., Light Scattering in Semiconductor Structures and Superlattices, Edit by Lockwood, D.J. and Young, J.F., Plenum Press, New York, 1991
16 Campbell, I.H. and Fauchet, P.M., Sol. State Comm., 58 (10), 739 (1986)
17 Dorfinan, B., Abraizov, M., Pollak, F.H., Yan, D., Strongin, M., Yang, X.-Q., Rong, Z.-Y., to be published in MRS Sym Proc., 349, (1994)
18 Matsumoto, T., Futagi, T., and Mimura, H., Phys Rev B, 47, 13876 (1993)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed