Skip to main content Accessibility help
×
Home

Correlation Between Development of Leakage Current and Hydrogen Ionization in Ultrathin Silicon Dioxide Layers

  • V. V. Afanas'ev (a1) and A. Stesmans (a2)

Abstract

The generation of leakage current across 3-6-nm thick thermal oxides on (100)Si under electrical stress or irradiation with 10-eV photons is compared with the radiation-induced defect generation in 35-66-nm thick SiO2 layers. The degradation of both ultrathin and conventional oxides appears correlated with the concentration of atomic hydrogen in the layer. Both the leakage currents and the irradiation-induced defects were found to have two components: one thermally unstable that correlates with the H-induced donor states, and another related to the permanent oxide network damage ascribed to H-assisted Si-O bond break. As both degradation processes involve a proton formed in the oxide, we suggest that H ionization either by electron emission or by trapping a hole triggers oxide degradation.

Copyright

References

Hide All
1. DiMaria, D. J. and Stasiak, J. W., J. Appl. Phys. 65, 2342 (1989).
2. Dumin, D. J. and Maddux, J. R., IEEE Trans. Electron Devices ED–40, 986 (1993).
3. DiMaria, D. J., Cartier, E., and Arnold, D., J. Appl. Phys. 73, 3367 (1993).
4. Satake, H. and Toriumi, A., Appl. Phys. Lett. 67, p. 3489 (1995).
5. Depas, M., Vermeire, B., Mertens, P. W., Meuris, M., and Heyns, M. M., Semicond. Sci. Technol. 10, 753 (1995).
6. DiMaria, D. J. and Cartier, E., J. Appl. Phys. 78, 3883 (1995).
7. Scarpa, A., Paccagnella, A., Montera, F., Gibaudo, G., Pananakakis, G., Ghidini, G., and Fuochi, P. G., IEEE Trans. Nucl. Sci. NS–44, 1818 (1997).
8. Houssa, M., Gendt, S. De, Bokx, P. de, Mertens, P. W., and Heyns, M. M., Microelectron. Eng. 48, 43 (1999).
9. Afanas'ev, V. V. and Stesmans, A., J. Electrochem. Soc. 146, 4309 (1999).
10. Afanas'ev, V. V., Nijs, J. M. M. de, Balk, P., and Stesmans, A., J. Appl. Phys. 78, 6481 (1995).
11. Sah, C. T., Sun, J. I. C., and Tzou, J., Appl. Phys. Lett. 42, 204 (1983).
12. Schmidt, M. and Köster, H. Jr, Phys. Stat. Solidi B 174, 53 (1992).
13. Sah, C. T., Chen, J. Y., and Tzou, J. J. T., J. Appl. Phys. 53, 8886 (1982).
14. Druijf, K. G., Nijs, J. M. M. de, Drift, E. van der, Granneman, E. H. A., and Balk, P., Appl. Phys. Lett, 65, 347 (1994).
15. Nijs, J. M. M. de, Druijf, K. G., Afanas'ev, V. V., Drift, E. van der, and Balk, P., Appl. Phys. Lett. 65, 2428 (1994).
16. Afanas'ev, V. V. and Stesmans, A., Appl. Phys. Lett. 70, 1260 (1997).
17. Nijs, J. M. M. de, Druijf, K. G., and Afanas'ev, V. V., in Fundamental aspects of ultrathin dielectrics on Si-based devices: Towards an atomic-scale understanding, edited by Garfunkel, E. et al. (NATO ASI Series 3, 47, 1998) pp. 425430.
18. Afanas'ev, V. V., Nijs, J. M. M. de, and Balk, P., Appl. Phys. Lett. 66, p. 1738 (1995).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed