Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-17T01:52:23.013Z Has data issue: false hasContentIssue false

Correlation Between Bulk Morphology and Luminescence in Porous Silicon Investigated by Evaporation Induced Pore Collapse

Published online by Cambridge University Press:  17 March 2011

Donald J. Sirbuly
Affiliation:
Department of Chemistry and BiochemistryUniversity of California, Santa Barbara, CA 93106
Michael D Mason
Affiliation:
Department of Chemistry and BiochemistryUniversity of California, Santa Barbara, CA 93106
Steven K. Buratto
Affiliation:
Department of Chemistry and BiochemistryUniversity of California, Santa Barbara, CA 93106
Get access

Abstract

We use a combination of scanning electron microscopy, laser scanning confocal microscopy and luminescence spectroscopy to correlate the emission properties of anodized porous silicon (PS) with film morphology in samples that have undergone evaporation induced collapse of the underlying porous structure. Several PS samples were investigated as a function of the current density (J) and total etch time, while the total charge (Q) injected per unit area (and the total Si removed) was kept constant during etching. From this data two classes of PS samples emerge. Porous silicon samples produced at high current density have a 3-dimensional pore network with a narrow distribution of blue-green emitting chromophores. In contrast, low current density samples form a 2-dimensional pore network normal to the Si substrate with larger chromophores and exhibit broad red luminescence.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Canham, L. T., Applied Physics Letters, 57, 10461048 (1990).Google Scholar
2. Cullis, A. G., Canham, L. T. and Calcott, P. D. J., Applied Physics Letters, 82, 909965 (1997).Google Scholar
3. Lehmann, V. and Gösele, U., Applied Physics Letters, 58, 856858 (1991).Google Scholar
4. Lin, C.-H., Lee, S.-C. and Chen, Y.-F., Journal of Applied Physics, 75, 77287736 (1994).Google Scholar
5. Teschke, O., Applied Physics Letters, 64, 19861988 (1994).Google Scholar
6. Sailor, M., J., and Lee, E., J., , Advanced Materials, 9, 783793 (1997).Google Scholar
7. Mason, M. D., Credo, G. M., Weston, K. D. and Buratto, S. K., Physical Review Letters, 80, 54055408 (1998).Google Scholar
8. Noguchi, N., Suemune, I., Yamanishi, M., Hua, G. C. and Otsuka, N., Japan Journal of Applied Physics, 31, 490493 (1992).Google Scholar
9. Lauerhaas, J. M., Credo, G. M., Heinrich, J. L. and Sailor, M. J., Journal of the American Chemical Society, 114, 19111912 (1992).Google Scholar
10. Seo, Y., , Hun, Nahm, K., , Suk, An, M., , Hwan, Suh, E.-K., Lee, Y., Hee, Lee, K., , Bang and Lee, H., , Jae, Japanese Journal of Applied Physics, 33, 64256431 (1994).Google Scholar
11. Campbell, S. D., Jones, L. A., Nakamichi, E., Wei, F.-X. and Zajchowski, L. D., Journal of Vacuum Science and Technology, 13, 11841189 (1995).Google Scholar
12. Gruning, U. and Yelon, A., Thin Solid Films, 255, 135138 (1995).Google Scholar
13. Wolkin, M. V., Jorne, J., Fauchet, P. M., Allan, G. and Delerue, C., Physical Review Letters, 82, 197200 (1999).Google Scholar
14. Mason, M. D., Sirbuly, D. J., Carson, P. J., and Buratto, S. K., Journal of Chemical Physics, 114, 81198123 (2001).Google Scholar
15. Carlisle, J. A., Dongol, M., Germanenko, N. I., Pithawalla, Y. B., and El-Shall, M. S., Chemical Physics Letters, 326, 335340 (2000).Google Scholar
16. Li, S., Silvers, S., J., and El-Shall, M., , Samy, Journal of Physical Chemistry B, 101, 17941802 (1997).Google Scholar