Skip to main content Accessibility help
×
Home

Copper Valence and Local Environment in Aluminophosphate Glass-Ceramics for Immobilization of High Level Waste from Uranium-Graphite Reactor Spent Nuclear Fuel Reprocessing

  • Sergey V. Stefanovsky (a1), Andrey A. Shiryaev (a1), Michael B. Remizov (a2), Elena A. Belanova (a2), Pavel A. Kozlov (a2) and Boris F. Myasoedov (a3)...

Abstract

Copper valence and environment in two sodium aluminophosphate glasses suggested for immobilization of HLW from reprocessing of spent fuel of uranium-graphite channel reactor (Russian AMB) were studied by XRD, SEM/EDX, XAFS and EPR. Target glass formulations contained ∼2.4-2.5 mol.% CuO. The quenched samples were predominantly amorphous. The annealed MgO free sample had higher degree of crystallinity than the annealed MgO-bearing sample but both them contained orthophosphate phases. Cu in the materials was partitioned in favor of the vitreous phase. In all the samples copper is present as major Cu2+ and minor Cu+ ions. Cu2+ ions form planar square complexes (CN=4) with a Cu2+-O distance of 1.93-1.95 Å. Two more ions are positioned at a distance of 2.76-2.86 Å from Cu2+ ions. So the Cu2+ environment looks like a strongly elongated octahedron as it also follows from the absence of the pre-edge peak due to 1s→3d transition in Cu K edge XANES spectra of the materials. Cu+ ions form two collinear bonds at Cu+-O distances of 1.80-1.85 Å. Thus average Cu coordination number (CN) in the first shell was found to be 2.7-3.0.

Copyright

References

Hide All
1. Stefanovsky, S.V., Yudintsev, S.V., Giere, R., Lumpkin, G.R., “Nuclear Waste Forms,” Energy, Waste and the Environment: A Geological Perspective, ed. Giere, R. and Stille, P. (Geological Society, London, 2004) pp. 3763.
2. Musinu, A., Piccaluga, G., Pinna, G., Vlaic, G., Narducci, D., and Pizzini, S., J. Non-Cryst. Solids, 136, 198 (1991).
3. Bae, B.-S. and Weinberg, M.C., J. Non-Cryst. Solids, 168, 223 (1994).
4. Khattak, G.D., Salim, M.A., Hallak, A.B., Daous, M.A., Wenger, L.E., and Thompson, D.J., J. Mater. Sci. 30, 4032 (1995).
5. Koo, J., Bae, B.-S., and Na, H.-K., J. Non-Cryst. Solids. 212, 173 (1997).
6. Shih, P.Y., Yung, S.W., and Chin, T.S., J. Non-Cryst. Solids. 224, 143 (1998).
7. Shih, P.Y., Yung, S.W., and Chin, T.S., J. Non-Cryst. Solids. 244, 211 (1999).
8. Metwalli, E., Karabulut, M., Sidebottom, D.L., Morsi, M.M., and Brow, R.K., J. Non-Cryst. Solids. 344, 128 (2004).
9. Chahine, A., El-Tabirou, M., and Pascal, J.L., Mater. Lett. 58, 2776 (2004).
10. Chahine, A., El-Tabirou, M., Elbenaissi, M., Haddad, M., and Pascal, J.L., Mater. Chem. Phys. 84, 341 (2004)
11. Hoppe, U., Kranold, R., Barz, A., Stachel, D., Schöps, A., and Hannon, A.C., Phys. Chem. Glasses. 48, 188 (2007).
12. Giridhar, G., Ragnacharyulu, M., Ravikumar, R.V.S.S.N., and Sambasiva Rao, P., J. Mater. Sci. Technol. 25, 531 (2009).
13. Vedeanu, N., Magdas, D.A., and Stefan, R., J. Non-Cryst. Solids. 358, 3170 (2012).
14. Magdas, D.A., Stefan, R., Toloman, D., and Vedeanu, N., J. Mol. Struct. 10561057, 314 (2014).
15. Bogomolova, L.D., Jachkin, V.F., Lazukin, V.N., and Schmukler, V.A., J. Non-Cryst. Solids. 27, 427 (1978).
16. Bogomolova, L.D., Jachkin, V.F., Lazukin, V.N., Pavlushkina, T.K., and Schmukler, V.A., J. Non-Cryst. Solids. 28, 375 (1978).
17. Griscom, D.L., J. Non-Cryst. Solids. 40, 211 (1980).
18. Remizov, M.B., Belanova, E.A., Stefanovsky, S.V., Myasoedov, B.F., Nikonov, B.S., Glass Phys. Chem. 40, 534 (2014).
19. Stefanovsky, S.V., Nikonov, B.S., Remizov, M.B., Kozlov, P.V., Belanova, E.A., Shiryaev, A.A., and Zubavichus, Ya.V., Phys. Chem. Mater. Treat. (Russ.) [5], 74 (2014).
20. Stefanovsky, S.V., Myasoedov, B.F., Remizov, M.B., Kozlov, P.V., Belanova, E.A., Shiryaev, A.A., and Zubavichus, Ya.V., Doklady Chemistry, 457, 148 (2014).
21. Ravel, B. and Newville, M., J. Synchrotron Radiat. 12, 537541 (2005).
22. Ankudinov, A.L. and Rehr, J.J., Phys. Rev. B 56 17121716 (1997).
23. Grunes, L.A., Phys. Rev. B27, 21112131 (1983).

Keywords

Copper Valence and Local Environment in Aluminophosphate Glass-Ceramics for Immobilization of High Level Waste from Uranium-Graphite Reactor Spent Nuclear Fuel Reprocessing

  • Sergey V. Stefanovsky (a1), Andrey A. Shiryaev (a1), Michael B. Remizov (a2), Elena A. Belanova (a2), Pavel A. Kozlov (a2) and Boris F. Myasoedov (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed